Tuning the electrical and morphological characteristics of PEDOT:PSS filmsthrough mixed cosolvent addition and performance of their polymer solar cells
{"title":"Tuning the electrical and morphological characteristics of PEDOT:PSS filmsthrough mixed cosolvent addition and performance of their polymer solar cells","authors":"Çisem Kırbıyık","doi":"10.3906/fiz-1907-23","DOIUrl":null,"url":null,"abstract":"This work aimed to reveal the influence of premixed cosolvent addition to low conductive PEDOT:PSS solution and how the optimized thin film conductivity develops. PEDOT:PSS thin films were obtained by addition of EG and MeOH cosolvent mixture (8, 10, and 15 v/v.%) and the morphological, electrical, optical, and bandgap properties of the films obtained were characterized by different techniques. The addition of mixed cosolvent can effectively control the grain size distribution and thus the conductivity. The optical characterization results revealed that the bandgap decreased with increasing volume of mixed cosolvent. The conductivity characteristics showed that the addition of 10% v/v.% EG-MeOH blend to low conductive PEDOT:PSS solution is optimal. Polymer solar cells (PSCs) were produced with a configuration of ITO/PEDOT:PSS/P3HT:PCBM/Al, which is one of the most common configurations examined. The highest efficiency of 2.7% was achieved, which resulted in a 20% enhancement (2.2%) compared to the control device. \\end{abstract}","PeriodicalId":46003,"journal":{"name":"Turkish Journal of Physics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3906/fiz-1907-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
This work aimed to reveal the influence of premixed cosolvent addition to low conductive PEDOT:PSS solution and how the optimized thin film conductivity develops. PEDOT:PSS thin films were obtained by addition of EG and MeOH cosolvent mixture (8, 10, and 15 v/v.%) and the morphological, electrical, optical, and bandgap properties of the films obtained were characterized by different techniques. The addition of mixed cosolvent can effectively control the grain size distribution and thus the conductivity. The optical characterization results revealed that the bandgap decreased with increasing volume of mixed cosolvent. The conductivity characteristics showed that the addition of 10% v/v.% EG-MeOH blend to low conductive PEDOT:PSS solution is optimal. Polymer solar cells (PSCs) were produced with a configuration of ITO/PEDOT:PSS/P3HT:PCBM/Al, which is one of the most common configurations examined. The highest efficiency of 2.7% was achieved, which resulted in a 20% enhancement (2.2%) compared to the control device. \end{abstract}
本工作旨在揭示预混合共溶剂对低导电性PEDOT:PSS溶液的影响,以及优化后的薄膜导电性是如何发展的。通过添加EG和MeOH共溶剂混合物(8、10和15 v/v)得到PEDOT:PSS薄膜。%) and the morphological, electrical, optical, and bandgap properties of the films obtained were characterized by different techniques. The addition of mixed cosolvent can effectively control the grain size distribution and thus the conductivity. The optical characterization results revealed that the bandgap decreased with increasing volume of mixed cosolvent. The conductivity characteristics showed that the addition of 10% v/v.% EG-MeOH blend to low conductive PEDOT:PSS solution is optimal. Polymer solar cells (PSCs) were produced with a configuration of ITO/PEDOT:PSS/P3HT:PCBM/Al, which is one of the most common configurations examined. The highest efficiency of 2.7% was achieved, which resulted in a 20% enhancement (2.2%) compared to the control device. \end{abstract}
期刊介绍:
The Turkish Journal of Physics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language manuscripts in various fields of research in physics, astrophysics, and interdisciplinary topics related to physics. Contribution is open to researchers of all nationalities.