{"title":"Automatic atrial fibrillation detection from short ECG signals: A hybrid deep learning approach","authors":"Xiaodan Wu, Z. Sui, Chao-Hsien Chu, Guanjie Huang","doi":"10.1080/24725579.2021.1919249","DOIUrl":null,"url":null,"abstract":"Abstract Atrial fibrillation (AF) is one of the most common arrhythmic complications. Recently, researchers have attempted to use deep learning models, such as convolution neural networks (CNN) and/or Long Short-Term Memory (LSTM) neural networks to alleviate the tedious and time-consuming feature extraction process and achieve good classification results. In this paper we propose a hybrid CNN-LSTM model and use the short ECG signal from the PhysioNet/CinC Challenges 2017 dataset to explore and evaluate the relative performance of four data mining algorithms and three deep learning architectures. The original ECG signal, clinical diagnostic features and 169 features based on time domain, frequency domain and non-linear heart rate variability indicators were used for comparative experiments. The results show that with proper design and tuning, the Hybrid CNN-LSTM model performed much better than other benchmarked algorithms. It achieves 97.42% accuracy, 95.65% sensitivity, 97.14% specificity, 0.99 AUC (Area under the ROC curve) value and 0.98 F1 score. In general, with proper design and configuration, deep learning can be effective for automatic AF detection while data mining methods require domain knowledge and an extensive feature extraction and selection process to get satisfactory results. However, most machine learning algorithms, including deep learning models, perform the task as a black box, making it almost impossible to determine what features in the signal are critical to the analysis.","PeriodicalId":37744,"journal":{"name":"IISE Transactions on Healthcare Systems Engineering","volume":"12 1","pages":"1 - 19"},"PeriodicalIF":1.5000,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISE Transactions on Healthcare Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24725579.2021.1919249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Atrial fibrillation (AF) is one of the most common arrhythmic complications. Recently, researchers have attempted to use deep learning models, such as convolution neural networks (CNN) and/or Long Short-Term Memory (LSTM) neural networks to alleviate the tedious and time-consuming feature extraction process and achieve good classification results. In this paper we propose a hybrid CNN-LSTM model and use the short ECG signal from the PhysioNet/CinC Challenges 2017 dataset to explore and evaluate the relative performance of four data mining algorithms and three deep learning architectures. The original ECG signal, clinical diagnostic features and 169 features based on time domain, frequency domain and non-linear heart rate variability indicators were used for comparative experiments. The results show that with proper design and tuning, the Hybrid CNN-LSTM model performed much better than other benchmarked algorithms. It achieves 97.42% accuracy, 95.65% sensitivity, 97.14% specificity, 0.99 AUC (Area under the ROC curve) value and 0.98 F1 score. In general, with proper design and configuration, deep learning can be effective for automatic AF detection while data mining methods require domain knowledge and an extensive feature extraction and selection process to get satisfactory results. However, most machine learning algorithms, including deep learning models, perform the task as a black box, making it almost impossible to determine what features in the signal are critical to the analysis.
期刊介绍:
IISE Transactions on Healthcare Systems Engineering aims to foster the healthcare systems community by publishing high quality papers that have a strong methodological focus and direct applicability to healthcare systems. Published quarterly, the journal supports research that explores: · Healthcare Operations Management · Medical Decision Making · Socio-Technical Systems Analysis related to healthcare · Quality Engineering · Healthcare Informatics · Healthcare Policy We are looking forward to accepting submissions that document the development and use of industrial and systems engineering tools and techniques including: · Healthcare operations research · Healthcare statistics · Healthcare information systems · Healthcare work measurement · Human factors/ergonomics applied to healthcare systems Research that explores the integration of these tools and techniques with those from other engineering and medical disciplines are also featured. We encourage the submission of clinical notes, or practice notes, to show the impact of contributions that will be published. We also encourage authors to collect an impact statement from their clinical partners to show the impact of research in the clinical practices.