{"title":"Charged particle dynamics in black hole split monopole magnetosphere","authors":"Saeed Ullah Khan, Zhi-Min Chen","doi":"10.1140/epjc/s10052-023-11897-x","DOIUrl":null,"url":null,"abstract":"<div><p>This article examines particle dynamics and acceleration in the magnetic Penrose process (MPP) around Kerr black hole (BH) in a split monopole magnetic field. The characteristics of charged particle motion around magnetized BHs reveal four differen feasible regimes of ionized Keplerian disk behaviour: survival in regular epicyclic motion; changing into a chaotic toroidal state; collapse due to escaping along magnetic field lines and collapse due to falling into the BHs. By making use of the effective potential, we have investigated the position of stable circular orbits for both in- and off-equatorial planes. We observed that the positive magnetic field <span>\\({{\\mathcal {P}}}>0\\)</span> increases the stability of effective potential, whereas <span>\\({{\\mathcal {P}}}<0\\)</span> diminishes its stability. We show that ultra-efficient energy extraction from spinning supermassive BH controlled by the MPP can pay the bill. We anticipate neutral particle ionization, such as neutron beta-decay, edging closer to the BH horizon, charging protons to more than <span>\\(10^{20}\\)</span>eV for a supermassive BH of mass <span>\\(10^9M_{\\odot }\\)</span> and a magnetic field of strength <span>\\(10^4\\)</span>G.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11897-x.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-023-11897-x","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 1
Abstract
This article examines particle dynamics and acceleration in the magnetic Penrose process (MPP) around Kerr black hole (BH) in a split monopole magnetic field. The characteristics of charged particle motion around magnetized BHs reveal four differen feasible regimes of ionized Keplerian disk behaviour: survival in regular epicyclic motion; changing into a chaotic toroidal state; collapse due to escaping along magnetic field lines and collapse due to falling into the BHs. By making use of the effective potential, we have investigated the position of stable circular orbits for both in- and off-equatorial planes. We observed that the positive magnetic field \({{\mathcal {P}}}>0\) increases the stability of effective potential, whereas \({{\mathcal {P}}}<0\) diminishes its stability. We show that ultra-efficient energy extraction from spinning supermassive BH controlled by the MPP can pay the bill. We anticipate neutral particle ionization, such as neutron beta-decay, edging closer to the BH horizon, charging protons to more than \(10^{20}\)eV for a supermassive BH of mass \(10^9M_{\odot }\) and a magnetic field of strength \(10^4\)G.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.