Model-based approach to improve class 1 AVO attributes

IF 1.7 Q3 GEOSCIENCES, MULTIDISCIPLINARY Journal of Asian Earth Sciences: X Pub Date : 2022-06-01 DOI:10.1016/j.jaesx.2021.100076
Ashok Yadav , Soumya Nayak , Samit Mondal , Rima Chatterjee
{"title":"Model-based approach to improve class 1 AVO attributes","authors":"Ashok Yadav ,&nbsp;Soumya Nayak ,&nbsp;Samit Mondal ,&nbsp;Rima Chatterjee","doi":"10.1016/j.jaesx.2021.100076","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a model-based Amplitude Variation with Offset (AVO) approach to address the assumption of weak elastic contrast in the linearized approximations of Aki-Richard equation. Existing approximations, especially for the Class 1 AVO response, which indicates the positive elastic contrast, deviate significantly from the Zoeppritz equation in presence of large elastic contrast. Results of the proposed approach show that it can minimize the deviation from the Zoeppritz equation, improve AVO attributes, and is capable of providing the desired attribute for characterizing a reservoir. The method starts with two matrices. One matrix is of the simulated rock properties termed as the rock-property-matrix and the other of the Zoeppritz AVO responses for those rock properties termed as the response-matrix. A model-based AVO equation or the basis-function-matrix is computed utilizing the rock-property-matrix and the response-matrix. The inverse of the basis-function-matrix is applied to the real data to get the AVO attributes from this approach. The conventional AVO (Aki-Richards) and model-based AVO attributes are compared in a class 1 AVO environment from the offshore east coast of India. The curvature attribute based on model-based AVO shows significant improvement. The synthetic-seismic correlation of the curvature attribute improves from −0.03 to 0.9 while synthetic-seismic correlation of the gradient attribute improves from 0.5 to 0.77. The improved AVO attribute volumes add significant values in the reservoir characterization.</p></div>","PeriodicalId":37149,"journal":{"name":"Journal of Asian Earth Sciences: X","volume":"7 ","pages":"Article 100076"},"PeriodicalIF":1.7000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590056021000335/pdfft?md5=b818089ec639df3b0e814a6441624e8b&pid=1-s2.0-S2590056021000335-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Earth Sciences: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590056021000335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a model-based Amplitude Variation with Offset (AVO) approach to address the assumption of weak elastic contrast in the linearized approximations of Aki-Richard equation. Existing approximations, especially for the Class 1 AVO response, which indicates the positive elastic contrast, deviate significantly from the Zoeppritz equation in presence of large elastic contrast. Results of the proposed approach show that it can minimize the deviation from the Zoeppritz equation, improve AVO attributes, and is capable of providing the desired attribute for characterizing a reservoir. The method starts with two matrices. One matrix is of the simulated rock properties termed as the rock-property-matrix and the other of the Zoeppritz AVO responses for those rock properties termed as the response-matrix. A model-based AVO equation or the basis-function-matrix is computed utilizing the rock-property-matrix and the response-matrix. The inverse of the basis-function-matrix is applied to the real data to get the AVO attributes from this approach. The conventional AVO (Aki-Richards) and model-based AVO attributes are compared in a class 1 AVO environment from the offshore east coast of India. The curvature attribute based on model-based AVO shows significant improvement. The synthetic-seismic correlation of the curvature attribute improves from −0.03 to 0.9 while synthetic-seismic correlation of the gradient attribute improves from 0.5 to 0.77. The improved AVO attribute volumes add significant values in the reservoir characterization.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型的1类AVO属性改进方法
我们提出了一种基于模型的振幅变化与偏移(AVO)方法来解决Aki-Richard方程线性化近似中的弱弹性对比度假设。现有的近似,特别是对于表示正弹性对比度的1类AVO响应,在存在较大弹性对比度时明显偏离Zoeppritz方程。结果表明,该方法可以最大限度地减少与Zoeppritz方程的偏差,提高AVO属性,并能够提供表征储层所需的属性。该方法从两个矩阵开始。一个矩阵表示模拟的岩石性质,称为岩石性质矩阵,另一个矩阵表示对这些岩石性质的Zoeppritz AVO响应,称为响应矩阵。利用岩石性质矩阵和响应矩阵计算基于模型的AVO方程或基函数矩阵。将基函数矩阵的逆应用于实际数据,得到AVO属性。在印度东海岸的1类AVO环境中,对传统AVO (Aki-Richards)和基于模型的AVO属性进行了比较。基于模型AVO的曲率属性得到了显著改善。曲率属性的综合地震相关系数由- 0.03提高到0.9,梯度属性的综合地震相关系数由0.5提高到0.77。改进的AVO属性体积为储层表征增加了重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Asian Earth Sciences: X
Journal of Asian Earth Sciences: X Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
3.40
自引率
0.00%
发文量
53
审稿时长
28 weeks
期刊最新文献
Spatial distribution of structural lineaments in the Al-Lith geothermal field, western Saudi Arabia: Remote sensing and aeromagnetic data analysis Differential diagenetic and densification processes of low-permeability and tight sandstones: A case study of the Jurassic Shaximiao Formation in the central and western Sichuan Basin, China Assessing the performance of machine learning and analytical hierarchy process (AHP) models for rainwater harvesting potential zone identification in hilly region, Bangladesh Origin and evolution of serpentinized peridotite from the Ciletuh Mélange in Sunda Arc, Indonesia: Evidence from petrography, mineralogy, and geochemistry Structural and bio-stratigraphic records of Janakor valley in north-western Himalayas, Pakistan: Implications for closure of Neo-Tethys Ocean
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1