{"title":"Shadow and stability of quantum-corrected black holes","authors":"Jinsong Yang, Cong Zhang, Yongge Ma","doi":"10.1140/epjc/s10052-023-11800-8","DOIUrl":null,"url":null,"abstract":"<div><p>Recently the quantum Oppenheimer–Snyder gravitational collapse model has been proposed in loop quantum gravity, providing quantum-corrected Schwarzschild spacetimes as the exterior of the collapsing dust ball. In this paper, the quantum gravity effects on the black hole shadows in this model are studied, and the stability of the quantum-corrected black holes is also analyzed by calculating the quasinormal modes. It turns out that the quantum correction always shrinks the radius of shadows, and the quantum-corrected black holes are stable against the scalar and vector perturbations.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 7","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11800-8.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-023-11800-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 3
Abstract
Recently the quantum Oppenheimer–Snyder gravitational collapse model has been proposed in loop quantum gravity, providing quantum-corrected Schwarzschild spacetimes as the exterior of the collapsing dust ball. In this paper, the quantum gravity effects on the black hole shadows in this model are studied, and the stability of the quantum-corrected black holes is also analyzed by calculating the quasinormal modes. It turns out that the quantum correction always shrinks the radius of shadows, and the quantum-corrected black holes are stable against the scalar and vector perturbations.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.