Negatively buoyant CO2 solution sequestration in synformal traps

IF 1.9 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Petroleum Geoscience Pub Date : 2021-11-22 DOI:10.1144/petgeo2021-074
S. Stewart
{"title":"Negatively buoyant CO2 solution sequestration in synformal traps","authors":"S. Stewart","doi":"10.1144/petgeo2021-074","DOIUrl":null,"url":null,"abstract":"Dissolving CO2 into water or brine produces a denser fluid than the CO2-free equivalent at all salinity, temperature and pressure conditions relevant to sedimentary basins. Negative buoyancy of CO2 solutions opens the possibility of utilizing negative-relief trapping configurations for CO2 sequestration, as opposed to structural highs conventionally sought for positively buoyant fluids, such as hydrocarbons or pure CO2. Exploring sedimentary basins for negative buoyancy traps can readily utilize hydrocarbon exploration datasets and techniques. Some major systemic differences when exploring for negative as opposed to positive buoyancy traps are examined here. Trap spatial scale is a consideration due to the inherent long-wavelength synformal geometry of basins. Antiforms are areally restricted relative to synforms, which may be embedded within larger-scale synformal closure at length scales right up to that of the basin itself. Multiscale synformal structures vary with basin type and may not be fully identified due to truncation effects arising from data-coverage limitations. Similar to hydrocarbon exploration, CO2 trap exploration must consider potential sequestration volumes in an uncertainty and risk framework. Charge risk is unnecessary in sequestration projects; however, the multiscale nature of synformal traps should be considered when estimating the range of storage volumes. Thematic collection: This article is part of the Geoscience for CO2 storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2021-074","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

Dissolving CO2 into water or brine produces a denser fluid than the CO2-free equivalent at all salinity, temperature and pressure conditions relevant to sedimentary basins. Negative buoyancy of CO2 solutions opens the possibility of utilizing negative-relief trapping configurations for CO2 sequestration, as opposed to structural highs conventionally sought for positively buoyant fluids, such as hydrocarbons or pure CO2. Exploring sedimentary basins for negative buoyancy traps can readily utilize hydrocarbon exploration datasets and techniques. Some major systemic differences when exploring for negative as opposed to positive buoyancy traps are examined here. Trap spatial scale is a consideration due to the inherent long-wavelength synformal geometry of basins. Antiforms are areally restricted relative to synforms, which may be embedded within larger-scale synformal closure at length scales right up to that of the basin itself. Multiscale synformal structures vary with basin type and may not be fully identified due to truncation effects arising from data-coverage limitations. Similar to hydrocarbon exploration, CO2 trap exploration must consider potential sequestration volumes in an uncertainty and risk framework. Charge risk is unnecessary in sequestration projects; however, the multiscale nature of synformal traps should be considered when estimating the range of storage volumes. Thematic collection: This article is part of the Geoscience for CO2 storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
负浮力CO2溶液在同型捕集器中的固存
在与沉积盆地相关的所有盐度、温度和压力条件下,将CO2溶解到水中或盐水中会产生比无CO2当量更稠密的流体。CO2溶液的负浮力开启了利用负释放捕获配置进行CO2封存的可能性,而不是传统上为正浮力流体(如碳氢化合物或纯CO2)寻求的结构高点。为负浮力圈闭勘探沉积盆地可以很容易地利用碳氢化合物勘探数据集和技术。这里考察了在探索负浮力陷阱与正浮力陷阱时的一些主要系统差异。由于盆地固有的长波长信息几何结构,需要考虑圈闭的空间尺度。Antiforms在区域上相对于同形面受到限制,后者可能嵌入更大尺度的同形面闭合中,长度尺度一直到盆地本身。多尺度同形结构因盆地类型而异,由于数据覆盖范围的限制而产生的截断效应,可能无法完全识别。与碳氢化合物勘探类似,二氧化碳圈闭勘探必须在不确定性和风险框架中考虑潜在的封存量。在固存项目中不需要收费风险;然而,在估计存储容量范围时,应考虑同形陷阱的多尺度性质。专题收藏:本文是二氧化碳储存地球科学收藏的一部分,可在:https://www.lyellcollection.org/cc/geoscience-for-co2-storage
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Petroleum Geoscience
Petroleum Geoscience 地学-地球科学综合
CiteScore
4.80
自引率
11.80%
发文量
28
审稿时长
>12 weeks
期刊介绍: Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE). Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership. Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.
期刊最新文献
Research on Water Flooding Front Based on Dynamic and Static Data Inversion—A case study Petroleum source rocks characterisation and depositional environment of Kimmeridgian-Tithonian Sequences, Jaisalmer Basin, Western Rajasthan, India A quantitative study of microstructure of Indian Gondwana shale: a fractal and algebraic topology approach Seismic stratigraphy of the Cretaceous post-rift in Punta del Este Basin (offshore Uruguay) and its implications for deep-water reservoirs Integrated geological and geophysical workflow for structural modelling; case study from the contraction foothills zone of the Colombian Eastern Cordillera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1