The Open Systems View and the Everett Interpretation

Q2 Physics and Astronomy Quantum Reports Pub Date : 2023-04-28 DOI:10.3390/quantum5020027
Michael E. Cuffaro, S. Hartmann
{"title":"The Open Systems View and the Everett Interpretation","authors":"Michael E. Cuffaro, S. Hartmann","doi":"10.3390/quantum5020027","DOIUrl":null,"url":null,"abstract":"It is argued that those who defend the Everett, or ‘many-worlds’, interpretation of quantum mechanics should embrace what we call the general quantum theory of open systems (GT) as the proper framework in which to conduct foundational and philosophical investigations in quantum physics. GT is a wider dynamical framework than its alternative, standard quantum theory (ST). This is true even though GT makes no modifications to the quantum formalism. GT rather takes a different view, what we call the open systems view, of the formalism; i.e., in GT, the dynamics of systems whose physical states are fundamentally represented by density operators are represented as fundamentally open as specified by an in general non-unitary dynamical map. This includes, in principle, the dynamics of the universe as a whole. We argue that the more general dynamics describable in GT can be physically motivated, that there is as much prima facie empirical support for GT as there is for ST, and that GT could be fully in the spirit of the Everett interpretation—that there might, in short, be little reason for an Everettian not to embrace the more general theoretical landscape that GT allows one to explore.","PeriodicalId":34124,"journal":{"name":"Quantum Reports","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/quantum5020027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

It is argued that those who defend the Everett, or ‘many-worlds’, interpretation of quantum mechanics should embrace what we call the general quantum theory of open systems (GT) as the proper framework in which to conduct foundational and philosophical investigations in quantum physics. GT is a wider dynamical framework than its alternative, standard quantum theory (ST). This is true even though GT makes no modifications to the quantum formalism. GT rather takes a different view, what we call the open systems view, of the formalism; i.e., in GT, the dynamics of systems whose physical states are fundamentally represented by density operators are represented as fundamentally open as specified by an in general non-unitary dynamical map. This includes, in principle, the dynamics of the universe as a whole. We argue that the more general dynamics describable in GT can be physically motivated, that there is as much prima facie empirical support for GT as there is for ST, and that GT could be fully in the spirit of the Everett interpretation—that there might, in short, be little reason for an Everettian not to embrace the more general theoretical landscape that GT allows one to explore.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开放系统观与埃弗雷特解释
有人认为,那些捍卫Everett或“许多世界”量子力学解释的人应该接受我们所说的开放系统的一般量子理论(GT),作为在量子物理学中进行基础和哲学研究的适当框架。GT是一个比其替代的标准量子理论(ST)更广泛的动力学框架。这是真的,尽管GT没有对量子形式进行任何修改。GT对形式主义持不同的观点,我们称之为开放系统观;即,在GT中,其物理状态基本上由密度算子表示的系统的动力学被表示为基本开放的,如一般的非酉动力学映射所指定的。原则上,这包括整个宇宙的动力学。我们认为,可以在GT中描述的更普遍的动力学可以是物理动机,对GT的初步实证支持与对ST的初步实证支撑一样多,并且GT可以完全符合埃弗雷特解释的精神——简言之,埃弗雷特人可能没有理由不接受GT允许人们探索的更广泛的理论景观。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Reports
Quantum Reports Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
3.30
自引率
0.00%
发文量
33
审稿时长
10 weeks
期刊最新文献
Nitrogen-Related High-Spin Vacancy Defects in Bulk (SiC) and 2D (hBN) Crystals: Comparative Magnetic Resonance (EPR and ENDOR) Study Fisher Information for a System Composed of a Combination of Similar Potential Models A Normalization Condition for the Probability Current in Some Remarkable Cases The Many-Worlds Interpretation of Quantum Mechanics: Current Status and Relation to Other Interpretations Tomographic Universality of the Discrete Wigner Function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1