An empirical forecasting method for epidemic outbreaks with application to Covid-19

IF 0.4 Q4 MATHEMATICS, APPLIED Mathematics in applied sciences and engineering Pub Date : 2020-12-24 DOI:10.5206/mase/11101
Bo Deng
{"title":"An empirical forecasting method for epidemic outbreaks with application to Covid-19","authors":"Bo Deng","doi":"10.5206/mase/11101","DOIUrl":null,"url":null,"abstract":"In this paper we describe an empirical forecasting method for epidemic outbreaks. It is an iterative process to find possible parameter values for epidemic models to best fit real data. As a demonstration of principle, we used the logistic model, the simplest model in epidemiology, for an experiment of live forecasting. Short-term forecasts can last to 5 or more days with relative errors consistently kept blow 5%. The method should improve with more realistic models.","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mase/11101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we describe an empirical forecasting method for epidemic outbreaks. It is an iterative process to find possible parameter values for epidemic models to best fit real data. As a demonstration of principle, we used the logistic model, the simplest model in epidemiology, for an experiment of live forecasting. Short-term forecasts can last to 5 or more days with relative errors consistently kept blow 5%. The method should improve with more realistic models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
疫情的实证预测方法及其在新冠肺炎中的应用
在本文中,我们描述了一种流行病暴发的经验预测方法。为流行病模型寻找可能的参数值以最佳拟合真实数据是一个迭代过程。作为原理的证明,我们使用了流行病学中最简单的模型——逻辑模型来进行实时预测实验。短期预测可以持续5天或更长时间,相对误差始终保持在5%以上。该方法应该通过更真实的模型进行改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
21 weeks
期刊最新文献
Solution of fractional modified Kawahara equation: a semi-analytic approach Recovery of an initial temperature of a one-dimensional body from finite time-observations Multiscale modeling approach to assess the impact of antibiotic treatment for COVID-19 on MRSA transmission and alternative immunotherapy treatment options The minimal invasion speed of two competing species in homogeneous environment Assessing the impact of host predation with Holling II response on the transmission of Chagas disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1