Temesgen Addise, B. Bedadi, A. Regassa, Lemma Wogi, Samuel Feyissa
{"title":"Spatial Variability of Soil Organic Carbon Stock in Gurje Subwatershed, Hadiya Zone, Southern Ethiopia","authors":"Temesgen Addise, B. Bedadi, A. Regassa, Lemma Wogi, Samuel Feyissa","doi":"10.1155/2022/5274482","DOIUrl":null,"url":null,"abstract":"Soil organic carbon contents are expected to vary from place to place because of variation in soil properties. However, the extent of variability has not been explored in the study area. This study has, therefore, been initiated to assess the spatial variability of soil organic carbon stock in Gurje subwatershed Hadiya Zone, Southern Ethiopia. A total of 40 randomly predefined sampling points were identified for soil sampling using GIS and a total of 80 composite soil samples and 80 core samples were collected from those points at two sampling soil depths (0–20 cm and 20–40 cm). The ordinary kriging (OK) method was used as a geostatistical tool and applied to model the spatial variability of soil organic carbon in this study. With respect to soil depth, the coefficient of variation (CV%) for SOC and SOCS varied from 40.87 to 51.36%, which indicated moderate variability in the study area. For the land use types, the CV% varied from 7.94 to 42.06%, indicating low to moderate variability for the variables in the study area. The exponential semivariogram model described the spatial structure of SOC at 0–20 cm depth while the spherical one was used for SOCS. Moreover, the exponential model was best suited for SOCS at a soil depth of 20–40 cm, while the circular model was appropriate for SOC at this depth. The nugget/sill ratio (C0/C0 + C) of SOC and SOCS varied from nil to 15.58, reflecting a strong spatial dependence, which could be mainly due to the influence of intrinsic factors (e.g., natural variations in soils) in the study area. Overall, the spatial distributions of SOC and SOCS were higher in the northwestern and eastern parts of the subwatershed.","PeriodicalId":38438,"journal":{"name":"Applied and Environmental Soil Science","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/5274482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Soil organic carbon contents are expected to vary from place to place because of variation in soil properties. However, the extent of variability has not been explored in the study area. This study has, therefore, been initiated to assess the spatial variability of soil organic carbon stock in Gurje subwatershed Hadiya Zone, Southern Ethiopia. A total of 40 randomly predefined sampling points were identified for soil sampling using GIS and a total of 80 composite soil samples and 80 core samples were collected from those points at two sampling soil depths (0–20 cm and 20–40 cm). The ordinary kriging (OK) method was used as a geostatistical tool and applied to model the spatial variability of soil organic carbon in this study. With respect to soil depth, the coefficient of variation (CV%) for SOC and SOCS varied from 40.87 to 51.36%, which indicated moderate variability in the study area. For the land use types, the CV% varied from 7.94 to 42.06%, indicating low to moderate variability for the variables in the study area. The exponential semivariogram model described the spatial structure of SOC at 0–20 cm depth while the spherical one was used for SOCS. Moreover, the exponential model was best suited for SOCS at a soil depth of 20–40 cm, while the circular model was appropriate for SOC at this depth. The nugget/sill ratio (C0/C0 + C) of SOC and SOCS varied from nil to 15.58, reflecting a strong spatial dependence, which could be mainly due to the influence of intrinsic factors (e.g., natural variations in soils) in the study area. Overall, the spatial distributions of SOC and SOCS were higher in the northwestern and eastern parts of the subwatershed.
期刊介绍:
Applied and Environmental Soil Science is a peer-reviewed, Open Access journal that publishes research and review articles in the field of soil science. Its coverage reflects the multidisciplinary nature of soil science, and focuses on studies that take account of the dynamics and spatial heterogeneity of processes in soil. Basic studies of the physical, chemical, biochemical, and biological properties of soil, innovations in soil analysis, and the development of statistical tools will be published. Among the major environmental issues addressed will be: -Pollution by trace elements and nutrients in excess- Climate change and global warming- Soil stability and erosion- Water quality- Quality of agricultural crops- Plant nutrition- Soil hydrology- Biodiversity of soils- Role of micro- and mesofauna in soil