{"title":"The austenitic peak stress model of low-alloy steel at elevated temperature based on the valence electron theory","authors":"Xu-dong Zhou, X. Liu, Zhenglin Chen","doi":"10.1504/IJCMSSE.2018.10016523","DOIUrl":null,"url":null,"abstract":"The traditional method of calculating the high-temperature austenite peak stress empirical model proposed by Sellars and McTegart has been used for 50 years. A new method based on the valence electron theory is presented in three steps. The first step is to calculate the austenitic valence electron parameters and their statistical values at high temperature. The second one is to calculate the binding energy and total binding energy based on the valence electron statistic parameters. The total binding energy is defined as the sum of the mole fractions of the constituent elements in low alloy steel and the corresponding binding energy. The last step is to establish the model of austenitic peak stress at elevated-temperature based on the combination of Hall-Petch formula and Misaka formula as well as the total binding energy. The prediction results show that the austenitic peak stress model presented in this paper has good precision.","PeriodicalId":39426,"journal":{"name":"International Journal of Computational Materials Science and Surface Engineering","volume":"7 1","pages":"193"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Materials Science and Surface Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCMSSE.2018.10016523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The traditional method of calculating the high-temperature austenite peak stress empirical model proposed by Sellars and McTegart has been used for 50 years. A new method based on the valence electron theory is presented in three steps. The first step is to calculate the austenitic valence electron parameters and their statistical values at high temperature. The second one is to calculate the binding energy and total binding energy based on the valence electron statistic parameters. The total binding energy is defined as the sum of the mole fractions of the constituent elements in low alloy steel and the corresponding binding energy. The last step is to establish the model of austenitic peak stress at elevated-temperature based on the combination of Hall-Petch formula and Misaka formula as well as the total binding energy. The prediction results show that the austenitic peak stress model presented in this paper has good precision.
期刊介绍:
IJCMSSE is a refereed international journal that aims to provide a blend of theoretical and applied study of computational materials science and surface engineering. The scope of IJCMSSE original scientific papers that describe computer methods of modelling, simulation, and prediction for designing materials and structures at all length scales. The Editors-in-Chief of IJCMSSE encourage the submission of fundamental and interdisciplinary contributions on materials science and engineering, surface engineering and computational methods of modelling, simulation, and prediction. Papers published in IJCMSSE involve the solution of current problems, in which it is necessary to apply computational materials science and surface engineering methods for solving relevant engineering problems.