Utilization of accelerated carbonation to enhance the application of steel slag: a review

IF 4.7 3区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Journal of Sustainable Cement-Based Materials Pub Date : 2022-12-27 DOI:10.1080/21650373.2022.2154287
Yue Wang, Jianhui Liu, Xiang Hu, Jun Chang, Tingting Zhang, Caijun Shi
{"title":"Utilization of accelerated carbonation to enhance the application of steel slag: a review","authors":"Yue Wang, Jianhui Liu, Xiang Hu, Jun Chang, Tingting Zhang, Caijun Shi","doi":"10.1080/21650373.2022.2154287","DOIUrl":null,"url":null,"abstract":"Accelerated carbonation can promote the application of steel slag in construction materials. This method can not only resolve the fatal volume expansion of steel slag, but also sequestrate CO2. The carbonation thermodynamics, carbonation degree, carbonation methods and influencing factors of steel slag were reviewed. The theoretical CO2 uptake of steel slag is between 25% to 50%. However, the actual CO2 uptake distribution curve obeys normal distribution with a median value of 15%, which affected by carbonation methods, different influencing factors such as curing temperature, CO2 concentration and pressure, particle size of steel slag, liquid to solid ratio, and extraction agents. The improvement mechanism of accelerated carbonation on mechanical properties and stability of steel slag-based building materials was analyzed. Besides, different accelerated carbonated steel slag-based products with enhanced properties were summarized. Finally, some valuable suggestions concerning accelerated carbonation of steel slag were presented for further research and industrial application.","PeriodicalId":48521,"journal":{"name":"Journal of Sustainable Cement-Based Materials","volume":"12 1","pages":"471 - 486"},"PeriodicalIF":4.7000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Cement-Based Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21650373.2022.2154287","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 10

Abstract

Accelerated carbonation can promote the application of steel slag in construction materials. This method can not only resolve the fatal volume expansion of steel slag, but also sequestrate CO2. The carbonation thermodynamics, carbonation degree, carbonation methods and influencing factors of steel slag were reviewed. The theoretical CO2 uptake of steel slag is between 25% to 50%. However, the actual CO2 uptake distribution curve obeys normal distribution with a median value of 15%, which affected by carbonation methods, different influencing factors such as curing temperature, CO2 concentration and pressure, particle size of steel slag, liquid to solid ratio, and extraction agents. The improvement mechanism of accelerated carbonation on mechanical properties and stability of steel slag-based building materials was analyzed. Besides, different accelerated carbonated steel slag-based products with enhanced properties were summarized. Finally, some valuable suggestions concerning accelerated carbonation of steel slag were presented for further research and industrial application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用加速碳酸化提高钢渣的应用
加速碳化可以促进钢渣在建筑材料中的应用。这种方法不仅可以解决钢渣体积膨胀的致命问题,而且可以封存CO2。综述了钢渣的碳化热力学、碳化程度、碳化方法及影响因素。钢渣的理论CO2吸收率在25%至50%之间。然而,实际的CO2吸收分布曲线服从正态分布,中值为15%,这受到碳化方法、固化温度、CO2浓度和压力、钢渣粒度、液固比和萃取剂等不同影响因素的影响。分析了加速碳化对钢渣基建筑材料力学性能和稳定性的改善机理。此外,总结了不同性能增强的加速碳酸化钢渣基产品。最后,对钢渣的加速碳化提出了一些有价值的建议,以供进一步的研究和工业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
15.90%
发文量
71
期刊介绍: The Journal of Sustainable Cement-Based Materials aims to publish theoretical and applied researches on materials, products and structures that incorporate cement. The journal is a forum for discussion of research on manufacture, hydration and performance of cement-based materials; novel experimental techniques; the latest analytical and modelling methods; the examination and the diagnosis of real cement and concrete structures; and the potential for improved cement-based materials. The journal welcomes original research papers, major reviews, rapid communications and selected conference papers. The Journal of Sustainable Cement-Based Materials covers a wide range of topics within its subject category, including but are not limited to: • raw materials and manufacture of cement • mixing, rheology and hydration • admixtures • structural characteristics and performance of cement-based materials • characterisation techniques and modeling • use of fibre in cement based-materials • degradation and repair of cement-based materials • novel testing techniques and applications • waste management
期刊最新文献
Preparation of high flexural strength rankinite cement benefiting from formation of aragonite whisker during carbonation curing Hydration mechanism and mechanical properties of a developed low-carbon and lightweight strain-hardening cementitious composites Development and characterization of volume-stabilized grouts used for borehole heat exchangers Piezoresistive performance of self-sensing cement-based composites filled with multi-layer graphene Mechanical and microstructural properties of structural and non-structural lightweight foamed concrete with coal bottom ash as cement and sand replacement material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1