Estimation with multivariate outcomes having nonignorable item nonresponse

Pub Date : 2022-06-10 DOI:10.1007/s10463-022-00836-4
Lyu Ni, Jun Shao
{"title":"Estimation with multivariate outcomes having nonignorable item nonresponse","authors":"Lyu Ni,&nbsp;Jun Shao","doi":"10.1007/s10463-022-00836-4","DOIUrl":null,"url":null,"abstract":"<div><p>To estimate unknown population parameters based on <span>\\({\\varvec{y}}\\)</span>, a vector of multivariate outcomes having nonignorable item nonresponse that directly depends on <span>\\({\\varvec{y}}\\)</span>, we propose an innovative inverse propensity weighting approach when the joint distribution of <span>\\({\\varvec{y}}\\)</span> and associated covariate <span>\\({\\varvec{x}}\\)</span> is nonparametric and the nonresponse probability conditional on <span>\\({\\varvec{y}}\\)</span> and <span>\\({\\varvec{x}}\\)</span> has a parametric form. To deal with the identifiability issue, we utilize a nonresponse instrument <span>\\({\\varvec{z}}\\)</span>, an auxiliary variable related to <span>\\({\\varvec{y}}\\)</span> but not related to the nonresponse probability conditional on <span>\\({\\varvec{y}}\\)</span> and <span>\\({\\varvec{x}}\\)</span>. We utilize a modified generalized method of moments to obtain estimators of the parameters in the nonresponse probability. Simulation results are presented and an application is illustrated in a real data set.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00836-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To estimate unknown population parameters based on \({\varvec{y}}\), a vector of multivariate outcomes having nonignorable item nonresponse that directly depends on \({\varvec{y}}\), we propose an innovative inverse propensity weighting approach when the joint distribution of \({\varvec{y}}\) and associated covariate \({\varvec{x}}\) is nonparametric and the nonresponse probability conditional on \({\varvec{y}}\) and \({\varvec{x}}\) has a parametric form. To deal with the identifiability issue, we utilize a nonresponse instrument \({\varvec{z}}\), an auxiliary variable related to \({\varvec{y}}\) but not related to the nonresponse probability conditional on \({\varvec{y}}\) and \({\varvec{x}}\). We utilize a modified generalized method of moments to obtain estimators of the parameters in the nonresponse probability. Simulation results are presented and an application is illustrated in a real data set.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
具有不可忽略项目无反应的多变量结果的估计
当\({\varvec{y}}\)和相关协变量\({\varvec{x}}\)的联合分布是非参数的,且以\({\varvec{y}}\)和\({\varvec{x}}\)为条件的非响应概率具有参数形式时,我们提出了一种创新的逆倾向加权方法,以估计基于\({\varvec{y}}\)的未知总体参数,是一个直接依赖于\({\varvec{y}}\)的具有不可忽略项目非响应的多变量结果向量。为了处理可识别性问题,我们使用了一个非响应工具\({\varvec{z}}\),这是一个与\({\varvec{y}}\)相关的辅助变量,但与\({\varvec{y}}\)和\({\varvec{x}}\)的非响应概率条件无关。我们利用一种改进的广义矩量方法得到了非响应概率下参数的估计量。给出了仿真结果,并举例说明了在实际数据集中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1