{"title":"On turbulent flow and aerodynamic noise of generic side-view mirror with cell-centred finite difference method","authors":"Fei Liao","doi":"10.1080/14685248.2022.2037621","DOIUrl":null,"url":null,"abstract":"This paper investigates the turbulent flow and aerodynamic noise of a half-cylinder body mounted on a flat plate at using high-order cell-centred finite difference method with delayed detached-eddy simulation (DDES) and large-eddy simulation (LES). Transient flow patterns from the two simulations are found to be very different in consideration of the small-scale structures. The profiles of mean velocity, resolved turbulent kinetic energy and resolved Reynolds shear stress are found to be similar among all the simulations, indicating mean quantities are relatively insensitive to turbulence modelling and grid resolution. The power spectra density of the pressure fluctuations show that LES is more capable of resolving energies in high-frequency range than DDES. After computing the normalised wavenumber-frequency spectra of fluctuating pressure on the window, we further carried out the wavenumber-frequency decomposition to separate the acoustic and the hydrodynamic components from the pressure fluctuations. The energy distribution shows that the acoustic energy has a much slower decaying rate in the high-frequency range than the hydrodynamic energy. In addition, the space-averaged sound pressure levels of pressure fluctuations on the window indicate that the present simulation with a high-order method is able to improve the accuracy in predicting pressure spectra. Finally, we carry out proper orthogonal decomposition to extract the dominating features of the decomposed acoustic and hydrodynamic components of pressure fluctuation. Patterns of multi-scale turbulence in hydrodynamic modes and propagating wavefronts of cylinder shape in acoustic modes are identified. The present research indicates that a relatively coarse grid is still capable of resolving fluctuating quantities of energy-containing structures, and LES is suggested against DDES when near-wall aerodynamic noise is the main concern.","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":"23 1","pages":"97 - 123"},"PeriodicalIF":1.5000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2022.2037621","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1
Abstract
This paper investigates the turbulent flow and aerodynamic noise of a half-cylinder body mounted on a flat plate at using high-order cell-centred finite difference method with delayed detached-eddy simulation (DDES) and large-eddy simulation (LES). Transient flow patterns from the two simulations are found to be very different in consideration of the small-scale structures. The profiles of mean velocity, resolved turbulent kinetic energy and resolved Reynolds shear stress are found to be similar among all the simulations, indicating mean quantities are relatively insensitive to turbulence modelling and grid resolution. The power spectra density of the pressure fluctuations show that LES is more capable of resolving energies in high-frequency range than DDES. After computing the normalised wavenumber-frequency spectra of fluctuating pressure on the window, we further carried out the wavenumber-frequency decomposition to separate the acoustic and the hydrodynamic components from the pressure fluctuations. The energy distribution shows that the acoustic energy has a much slower decaying rate in the high-frequency range than the hydrodynamic energy. In addition, the space-averaged sound pressure levels of pressure fluctuations on the window indicate that the present simulation with a high-order method is able to improve the accuracy in predicting pressure spectra. Finally, we carry out proper orthogonal decomposition to extract the dominating features of the decomposed acoustic and hydrodynamic components of pressure fluctuation. Patterns of multi-scale turbulence in hydrodynamic modes and propagating wavefronts of cylinder shape in acoustic modes are identified. The present research indicates that a relatively coarse grid is still capable of resolving fluctuating quantities of energy-containing structures, and LES is suggested against DDES when near-wall aerodynamic noise is the main concern.
期刊介绍:
Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence.
JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.