{"title":"Generalized Linear Regression Model to Determine the Threshold Effects of Climate Variables on Dengue Fever: A Case Study on Bangladesh","authors":"Shamima Hossain","doi":"10.1155/2023/2131801","DOIUrl":null,"url":null,"abstract":"One of the leading causes of the increase in the intensity of dengue fever transmission is thought to be climate change. Examining panel data from January 2000 to December 2021, this study discovered the nonlinear relationship between climate variables and dengue fever cases in Bangladesh. To determine this relationship, in this study, the monthly total rainfall in different years has been divided into two thresholds: (90 to 360 mm) and (<90 or >360 mm), and the daily average temperature in different months of the different years has been divided into four thresholds: (16°C to ≤20°C), (>20°C to ≤25°C), (>25°C to ≤28°C), and (>28°C to ≤30°C). Then, quasi-Poisson and zero-inflated Poisson regression models were applied to assess the relationship. This study found a positive correlation between temperature and dengue incidence and furthermore discovered that, among those four average temperature thresholds, the total number of dengue cases is maximum if the average temperature falls into the threshold (>28°C to ≤30°C) and minimum if the average temperature falls into the threshold (16°C to ≤20°C). This study also discovered that between the two thresholds of monthly total rainfall, the risk of a dengue fever outbreak is approximately two times higher when the monthly total rainfall falls into the thresholds (90 mm to 360 mm) compared to the other threshold. This study concluded that dengue fever incidence rates would be significantly more affected by climate change in regions with warmer temperatures. The number of dengue cases rises rapidly when the temperature rises in the context of moderate to low rainfall. This study highlights the significance of establishing potential temperature and rainfall thresholds for using risk prediction and public health programs to prevent and control dengue fever.","PeriodicalId":50715,"journal":{"name":"Canadian Journal of Infectious Diseases & Medical Microbiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Infectious Diseases & Medical Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2023/2131801","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
One of the leading causes of the increase in the intensity of dengue fever transmission is thought to be climate change. Examining panel data from January 2000 to December 2021, this study discovered the nonlinear relationship between climate variables and dengue fever cases in Bangladesh. To determine this relationship, in this study, the monthly total rainfall in different years has been divided into two thresholds: (90 to 360 mm) and (<90 or >360 mm), and the daily average temperature in different months of the different years has been divided into four thresholds: (16°C to ≤20°C), (>20°C to ≤25°C), (>25°C to ≤28°C), and (>28°C to ≤30°C). Then, quasi-Poisson and zero-inflated Poisson regression models were applied to assess the relationship. This study found a positive correlation between temperature and dengue incidence and furthermore discovered that, among those four average temperature thresholds, the total number of dengue cases is maximum if the average temperature falls into the threshold (>28°C to ≤30°C) and minimum if the average temperature falls into the threshold (16°C to ≤20°C). This study also discovered that between the two thresholds of monthly total rainfall, the risk of a dengue fever outbreak is approximately two times higher when the monthly total rainfall falls into the thresholds (90 mm to 360 mm) compared to the other threshold. This study concluded that dengue fever incidence rates would be significantly more affected by climate change in regions with warmer temperatures. The number of dengue cases rises rapidly when the temperature rises in the context of moderate to low rainfall. This study highlights the significance of establishing potential temperature and rainfall thresholds for using risk prediction and public health programs to prevent and control dengue fever.
期刊介绍:
Canadian Journal of Infectious Diseases and Medical Microbiology is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies related to infectious diseases of bacterial, viral and parasitic origin. The journal welcomes articles describing research on pathogenesis, epidemiology of infection, diagnosis and treatment, antibiotics and resistance, and immunology.