3D bioprinting of gene delivery scaffolds with controlled release

Q1 Computer Science Bioprinting Pub Date : 2023-06-01 DOI:10.1016/j.bprint.2023.e00270
Yi Xiang , Zheng Zhong , Emmie J. Yao , Wisarut Kiratitanaporn , Malleeka T. Suy , Shaochen Chen
{"title":"3D bioprinting of gene delivery scaffolds with controlled release","authors":"Yi Xiang ,&nbsp;Zheng Zhong ,&nbsp;Emmie J. Yao ,&nbsp;Wisarut Kiratitanaporn ,&nbsp;Malleeka T. Suy ,&nbsp;Shaochen Chen","doi":"10.1016/j.bprint.2023.e00270","DOIUrl":null,"url":null,"abstract":"<div><p>Localized gene delivery via engineered scaffolds offers spatiotemporal control of the gene vector release. Here, we explored the capability of digital light processing based bioprinting to fabricate 3D scaffolds in hydrogels for controlled gene delivery. We demonstrated the compatibility of the method with three representative hydrogel biomaterials for gene delivery. We further investigated the highly tunable release profile with these scaffolds by creating and combining distinct release mechanisms of diffusion and ion exchange. The efficacy of gene delivery of these scaffolds was validated <em>in vitro</em> using 293T cells. Results from this work could potentially facilitate the development of synergistic and personalized gene therapies.</p></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886623000131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

Abstract

Localized gene delivery via engineered scaffolds offers spatiotemporal control of the gene vector release. Here, we explored the capability of digital light processing based bioprinting to fabricate 3D scaffolds in hydrogels for controlled gene delivery. We demonstrated the compatibility of the method with three representative hydrogel biomaterials for gene delivery. We further investigated the highly tunable release profile with these scaffolds by creating and combining distinct release mechanisms of diffusion and ion exchange. The efficacy of gene delivery of these scaffolds was validated in vitro using 293T cells. Results from this work could potentially facilitate the development of synergistic and personalized gene therapies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有控制释放的基因递送支架的3D生物打印
通过工程支架的局部基因传递提供了基因载体释放的时空控制。在这里,我们探索了基于数字光处理的生物打印技术在水凝胶中制造3D支架的能力,以控制基因的传递。我们证明了该方法与三种代表性的水凝胶生物材料在基因传递方面的相容性。我们通过创建和结合不同的扩散和离子交换释放机制,进一步研究了这些支架的高度可调释放特性。利用293T细胞体外实验验证了这些支架的基因递送效果。这项工作的结果可能会促进协同和个性化基因治疗的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioprinting
Bioprinting Computer Science-Computer Science Applications
CiteScore
11.50
自引率
0.00%
发文量
72
审稿时长
68 days
期刊介绍: Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.
期刊最新文献
3D and 4D printed materials for cardiac transplantation: Advances in biogenerative engineering Evolution of toxicity testing platforms from 2D to advanced 3D bioprinting for safety assessment of drugs Robust design optimization of Critical Quality Indicators (CQIs) of medical-graded polycaprolactone (PCL) in bioplotting Recent advances in the development of stereolithography-based additive manufacturing processes: A review of applications and challenges Optimizing biomaterial inks: A study on the printability of Carboxymethyl cellulose-Laponite nanocomposite hydrogels and dental pulp stem cells bioprinting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1