Recent Advances in Gold Nanomaterials for Photothermal Therapy

Y. Chuang, Hsin-Lun Lee, J. Chiou, L. Lo
{"title":"Recent Advances in Gold Nanomaterials for Photothermal Therapy","authors":"Y. Chuang, Hsin-Lun Lee, J. Chiou, L. Lo","doi":"10.3390/jnt3020008","DOIUrl":null,"url":null,"abstract":"Gold nanoparticle (AuNPs)-mediated photothermal therapy (PTT) has attracted increasing attention both in laboratory research and clinical applications. Due to its easily-tuned properties of irradiation light and inside-out hyperthermia ability, it has demonstrated clear advantages in cancer therapy over conventional thermal ablation. Despite this great advancement, the therapeutic efficacy of AuNPs mediated PTT in tumor treatment remains compromised by several obstacles, including low photothermal conversion efficiency, tissue penetration limitation of excitation light, and inherent non-specificity. In view of the rapid development of AuNPs mediated PTT, we present an in-depth review of major breakthroughs in the advanced development of gold nanomaterials for PTT, with emphasis on those from 2010 to date. In particular, the current state of knowledge for AuNPs based photothermal agents within a paradigm of key structure-optical property relationships is presented in order to provide guidance for the design of novel AuNP based photothermal agents to meet necessary functional requirements in specific applications. Furthermore, potential challenges and future development of AuNP mediated PTT are also elucidated for clinical translation. It is expected that AuNP mediated PTT will soon constitute a markedly promising avenue in the treatment of cancer.","PeriodicalId":73846,"journal":{"name":"Journal of nanotheranostics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanotheranostics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jnt3020008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Gold nanoparticle (AuNPs)-mediated photothermal therapy (PTT) has attracted increasing attention both in laboratory research and clinical applications. Due to its easily-tuned properties of irradiation light and inside-out hyperthermia ability, it has demonstrated clear advantages in cancer therapy over conventional thermal ablation. Despite this great advancement, the therapeutic efficacy of AuNPs mediated PTT in tumor treatment remains compromised by several obstacles, including low photothermal conversion efficiency, tissue penetration limitation of excitation light, and inherent non-specificity. In view of the rapid development of AuNPs mediated PTT, we present an in-depth review of major breakthroughs in the advanced development of gold nanomaterials for PTT, with emphasis on those from 2010 to date. In particular, the current state of knowledge for AuNPs based photothermal agents within a paradigm of key structure-optical property relationships is presented in order to provide guidance for the design of novel AuNP based photothermal agents to meet necessary functional requirements in specific applications. Furthermore, potential challenges and future development of AuNP mediated PTT are also elucidated for clinical translation. It is expected that AuNP mediated PTT will soon constitute a markedly promising avenue in the treatment of cancer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光热治疗用金纳米材料的研究进展
金纳米粒子介导的光热治疗(PTT)在实验室研究和临床应用中引起了越来越多的关注。由于其易于调节的辐照光特性和内-外热疗能力,它在癌症治疗中表现出了优于传统热消融的明显优势。尽管取得了这一巨大进展,AuNPs介导的PTT在肿瘤治疗中的治疗效果仍然受到几个障碍的影响,包括光热转换效率低、激发光的组织穿透限制和固有的非特异性。鉴于AuNPs介导的PTT的快速发展,我们对用于PTT的金纳米材料的先进开发的重大突破进行了深入回顾,重点是2010年至今的突破。特别是,在关键结构-光学性质关系的范式中,介绍了基于AuNP的光热剂的当前知识状态,以便为设计新的基于AuNPs的光热剂提供指导,以满足特定应用中的必要功能要求。此外,还阐明了AuNP介导的PTT在临床翻译方面的潜在挑战和未来发展。预计AuNP介导的PTT将很快成为治疗癌症的一种非常有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Paradoxical Roles of Carbon Nanotubes in Cancer Therapy and Carcinogenesis Graphene Oxide Chemical Refining Screening to Improve Blood Compatibility of Graphene-Based Nanomaterials The Role of Fullerenes in Neurodegenerative Disorders Efficacy of 15 nm Gold Nanoparticles for Image-Guided Gliosarcoma Radiotherapy Enhancing Antibody Exposure in the Central Nervous System: Mechanisms of Uptake, Clearance, and Strategies for Improved Brain Delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1