A. Alamsyah, B. Prasetiyo, M. Hakim, F. D. Pradana
{"title":"Prediction of COVID-19 Using Recurrent Neural Network Model","authors":"A. Alamsyah, B. Prasetiyo, M. Hakim, F. D. Pradana","doi":"10.15294/sji.v8i1.30070","DOIUrl":null,"url":null,"abstract":"The COVID-19 case that infected humans was first discovered in China at the end of 2019. Since then, COVID-19 has spread to almost all countries in the world. To overcome this problem, it takes a quick effort to identify humans infected with COVID-19 more quickly. One of the alternative diagnoses for potential COVID-19 disease is Recurrent Neural Network (RNN). In this paper, RNN is implemented using the Elman network and applied to the COVID-19 dataset from Kaggle. The dataset consists of 70% training data and 30% test data. The learning parameters used were the maximum epoch, learning late, and hidden nodes. The research results show the percentage of accuracy is 88.","PeriodicalId":30781,"journal":{"name":"Scientific Journal of Informatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal of Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/sji.v8i1.30070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The COVID-19 case that infected humans was first discovered in China at the end of 2019. Since then, COVID-19 has spread to almost all countries in the world. To overcome this problem, it takes a quick effort to identify humans infected with COVID-19 more quickly. One of the alternative diagnoses for potential COVID-19 disease is Recurrent Neural Network (RNN). In this paper, RNN is implemented using the Elman network and applied to the COVID-19 dataset from Kaggle. The dataset consists of 70% training data and 30% test data. The learning parameters used were the maximum epoch, learning late, and hidden nodes. The research results show the percentage of accuracy is 88.