A Scaled Conjugate Gradient Method Based on New BFGS Secant Equation with Modified Nonmonotone Line Search

Tsegay Giday Woldu, Haibin Zhang, Yemane Hailu Fissuh
{"title":"A Scaled Conjugate Gradient Method Based on New BFGS Secant Equation with Modified Nonmonotone Line Search","authors":"Tsegay Giday Woldu, Haibin Zhang, Yemane Hailu Fissuh","doi":"10.4236/ajcm.2020.101001","DOIUrl":null,"url":null,"abstract":"In this paper, we provide and analyze a new scaled conjugate gradient method and its performance, based on the modified secant equation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and on a new modified nonmonotone line search technique. The method incorporates the modified BFGS secant equation in an effort to include the second order information of the objective function. The new secant equation has both gradient and function value information, and its update formula inherits the positive definiteness of Hessian approximation for general convex function. In order to improve the likelihood of finding a global optimal solution, we introduce a new modified nonmonotone line search technique. It is shown that, for nonsmooth convex problems, the proposed algorithm is globally convergent. Numerical results show that this new scaled conjugate gradient algorithm is promising and efficient for solving not only convex but also some large scale nonsmooth nonconvex problems in the sense of the Dolan-More performance profiles.","PeriodicalId":64456,"journal":{"name":"美国计算数学期刊(英文)","volume":"10 1","pages":"1-22"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"美国计算数学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ajcm.2020.101001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we provide and analyze a new scaled conjugate gradient method and its performance, based on the modified secant equation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and on a new modified nonmonotone line search technique. The method incorporates the modified BFGS secant equation in an effort to include the second order information of the objective function. The new secant equation has both gradient and function value information, and its update formula inherits the positive definiteness of Hessian approximation for general convex function. In order to improve the likelihood of finding a global optimal solution, we introduce a new modified nonmonotone line search technique. It is shown that, for nonsmooth convex problems, the proposed algorithm is globally convergent. Numerical results show that this new scaled conjugate gradient algorithm is promising and efficient for solving not only convex but also some large scale nonsmooth nonconvex problems in the sense of the Dolan-More performance profiles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进非单调线搜索的新BFGS割线方程的标度共轭梯度法
本文在Broyden-Fletcher-Goldfarb-Shanno(BFGS)方法的修正割线方程的基础上,提出并分析了一种新的标度共轭梯度方法及其性能。该方法结合了修正的BFGS割线方程,试图包括目标函数的二阶信息。新的割线方程同时具有梯度信息和函数值信息,其更新公式继承了一般凸函数Hessian近似的正定性。为了提高找到全局最优解的可能性,我们引入了一种新的改进的非单调线搜索技术。结果表明,对于非光滑凸问题,该算法具有全局收敛性。数值结果表明,这种新的尺度共轭梯度算法不仅适用于凸问题,而且适用于求解Dolan-More性能分布意义上的一些大规模非光滑非凸问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
348
期刊最新文献
Diophantine Quotients and Remainders with Applications to Fermat and Pythagorean Equations Quantization of the Kinetic Energy of Deterministic Chaos On Fermat Last Theorem: The New Efficient Expression of a Hypothetical Solution as a Function of Its Fermat Divisors Analyzing Electric Circuits with Computer Algebra Arithmetic Operations of Generalized Trapezoidal Picture Fuzzy Numbers by Vertex Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1