N. Joshi, Sneha Priya Pappula Reddy, Neeraj Kumar, C. Bharadwaj, K. Tapan, B. S. Patil, P. Jain, N. M. S., Manish Roorkiwal, P. Verma, R. Varshney, K. Siddique, S. K
{"title":"Siphoning novel sources of seedling salinity tolerance from the diverse chickpea landraces","authors":"N. Joshi, Sneha Priya Pappula Reddy, Neeraj Kumar, C. Bharadwaj, K. Tapan, B. S. Patil, P. Jain, N. M. S., Manish Roorkiwal, P. Verma, R. Varshney, K. Siddique, S. K","doi":"10.1071/CP22319","DOIUrl":null,"url":null,"abstract":"ABSTRACT Context. Chickpea (Cicer arietinum L.) are highly sensitive to elevated salinity, particularly at initial seedling establishment stage. Seedling screening would be an effective means to identify novel sources of donors for salt tolerance. Aim.This study aimed to identify salt stress tolerant genotypes at seedling stage from 50 chickpea accessions. Methods. The screening of 50 chickpea accessions was done under two salinity conditions including salt stress (8 dS m−1) and control (no salt stress). Accessions were studied for morphological traits, root system architectural analysis, and CSTI (Cumulative salt tolerance index). Further, principal component analysis was conducted to validate these results for more accuracy and reliability. Key results. For morphological traits, a high degree of genetic variation was seen among genotypes, and root traits were found to be the better indicators of salt stress tolerance. CSTI was used to classify the accessions; 22 (44%) were identified as salt sensitive, 21 (42%) were found to be moderately salt tolerant, and 7 (14%) had moderate to high salt tolerance. The most salt tolerant and salt sensitive genotypes were found to be ICCV10 and ILC5595, respectively. Conclusions. Early seedling screening has a great potential to identify genotypes with robust root systems, which can withstand salinity. Implications. We used a novel approach to classify chickpea landraces based on the combination of CSTI and principal component analysis methods. By choosing suitable donors and prospective genotypes at early growth stages, the knowledge gathered from this study may aid scientists and chickpea breeders in developing salt tolerant cultivars.","PeriodicalId":51237,"journal":{"name":"Crop & Pasture Science","volume":"74 1","pages":"1080 - 1093"},"PeriodicalIF":1.8000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop & Pasture Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1071/CP22319","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT Context. Chickpea (Cicer arietinum L.) are highly sensitive to elevated salinity, particularly at initial seedling establishment stage. Seedling screening would be an effective means to identify novel sources of donors for salt tolerance. Aim.This study aimed to identify salt stress tolerant genotypes at seedling stage from 50 chickpea accessions. Methods. The screening of 50 chickpea accessions was done under two salinity conditions including salt stress (8 dS m−1) and control (no salt stress). Accessions were studied for morphological traits, root system architectural analysis, and CSTI (Cumulative salt tolerance index). Further, principal component analysis was conducted to validate these results for more accuracy and reliability. Key results. For morphological traits, a high degree of genetic variation was seen among genotypes, and root traits were found to be the better indicators of salt stress tolerance. CSTI was used to classify the accessions; 22 (44%) were identified as salt sensitive, 21 (42%) were found to be moderately salt tolerant, and 7 (14%) had moderate to high salt tolerance. The most salt tolerant and salt sensitive genotypes were found to be ICCV10 and ILC5595, respectively. Conclusions. Early seedling screening has a great potential to identify genotypes with robust root systems, which can withstand salinity. Implications. We used a novel approach to classify chickpea landraces based on the combination of CSTI and principal component analysis methods. By choosing suitable donors and prospective genotypes at early growth stages, the knowledge gathered from this study may aid scientists and chickpea breeders in developing salt tolerant cultivars.
期刊介绍:
Crop and Pasture Science (formerly known as Australian Journal of Agricultural Research) is an international journal publishing outcomes of strategic research in crop and pasture sciences and the sustainability of farming systems. The primary focus is broad-scale cereals, grain legumes, oilseeds and pastures. Articles are encouraged that advance understanding in plant-based agricultural systems through the use of well-defined and original aims designed to test a hypothesis, innovative and rigorous experimental design, and strong interpretation. The journal embraces experimental approaches from molecular level to whole systems, and the research must present novel findings and progress the science of agriculture.
Crop and Pasture Science is read by agricultural scientists and plant biologists, industry, administrators, policy-makers, and others with an interest in the challenges and opportunities facing world agricultural production.
Crop and Pasture Science is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.