Designing multi-rotor tidal turbine fences

Q3 Engineering International Marine Energy Journal Pub Date : 2018-09-03 DOI:10.36688/IMEJ.1.61-70
C. Vogel, R. Willden
{"title":"Designing multi-rotor tidal turbine fences","authors":"C. Vogel, R. Willden","doi":"10.36688/IMEJ.1.61-70","DOIUrl":null,"url":null,"abstract":"An embedded Reynolds-Averaged Navier-Stokes blade element actuator disk model is used to investigate the hydrodynamic design of tidal turbines and their performance in a closely spaced cross-stream fence. Turbines designed for confined flows are found to require a larger blade solidity ratio than current turbine design practices imply in order to maximise power. Generally, maximum power can be increased by operating turbines in more confined flows than they were designed for, although this also requires the turbines to operate at a higher rotational speed, which may increase the likelihood of cavitation inception. In-array turbine performance differs from that predicted from single turbine analyses, with cross-fence variation in power and thrust developing between the inboard and outboard turbines. As turbine thrust increases the cross-fence variation increases, as the interference effects between adjacent turbines strengthen as turbine thrust increases, but it is observed that cross-stream variation can be mitigated through strategies such as pitch-to-feather power control. It was found that overall fence performance was maximised by using turbines designed for moderately constrained (blocked) flows, with greater blockage than that based solely on fence geometry, but lower blockage than that based solely on the turbine and local flow passage geometry to balance the multi-scale flow phenomena around tidal fences.","PeriodicalId":36111,"journal":{"name":"International Marine Energy Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Marine Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36688/IMEJ.1.61-70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4

Abstract

An embedded Reynolds-Averaged Navier-Stokes blade element actuator disk model is used to investigate the hydrodynamic design of tidal turbines and their performance in a closely spaced cross-stream fence. Turbines designed for confined flows are found to require a larger blade solidity ratio than current turbine design practices imply in order to maximise power. Generally, maximum power can be increased by operating turbines in more confined flows than they were designed for, although this also requires the turbines to operate at a higher rotational speed, which may increase the likelihood of cavitation inception. In-array turbine performance differs from that predicted from single turbine analyses, with cross-fence variation in power and thrust developing between the inboard and outboard turbines. As turbine thrust increases the cross-fence variation increases, as the interference effects between adjacent turbines strengthen as turbine thrust increases, but it is observed that cross-stream variation can be mitigated through strategies such as pitch-to-feather power control. It was found that overall fence performance was maximised by using turbines designed for moderately constrained (blocked) flows, with greater blockage than that based solely on fence geometry, but lower blockage than that based solely on the turbine and local flow passage geometry to balance the multi-scale flow phenomena around tidal fences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计多转子潮汐涡轮机围栏
采用内嵌式reynolds - average Navier-Stokes叶片单元作动器盘模型,研究了潮汐水轮机的水动力设计及其在窄距横流围栏中的性能。为受限流动设计的涡轮被发现需要比当前涡轮设计实践更大的叶片固体比,以最大限度地提高功率。一般来说,通过在比设计更受限制的流动中运行涡轮机可以增加最大功率,尽管这也要求涡轮机以更高的转速运行,这可能会增加空化开始的可能性。阵内涡轮性能与单涡轮分析预测的性能不同,在内外涡轮之间产生功率和推力的交叉变化。随着涡轮推力的增加,横栅变化也会增加,相邻涡轮之间的干扰效应也会随着涡轮推力的增加而增强,但可以通过俯距-羽功率控制等策略来缓解横流变化。研究发现,使用为适度约束(阻塞)流动设计的涡轮机,可以最大限度地提高围堰的整体性能,其阻塞程度高于仅基于围堰几何形状的涡轮,但低于仅基于涡轮和局部流道几何形状的涡轮,以平衡潮汐围堰周围的多尺度流动现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Marine Energy Journal
International Marine Energy Journal Engineering-Ocean Engineering
CiteScore
1.70
自引率
0.00%
发文量
24
审稿时长
12 weeks
期刊最新文献
Linear hydrodynamic model of rotating lift-based wave energy converters Effects of small marine energy deployments on oceanographic systems Engaging the Regulatory Community to Aid Environmental Consenting/Permitting Processes for Marine Renewable Energy Environmental and Social Acceptance module: reducing global and local environmental impacts for Ocean Energy Projects Assessment of potential wave power along a coastal province, Central Vietnam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1