{"title":"NOVEL ACCESSIBILITY METRICS BASED ON HIERARCHICAL DECOMPOSITION OF TRANSPORT NETWORKS","authors":"Divya Kwatra, K. Rao, Vasudha Bhatnagar","doi":"10.20858/sjsutst.2023.118.10","DOIUrl":null,"url":null,"abstract":"Scientific analysis of public transport systems at the urban, regional, and national levels is vital in this contemporary, highly connected world. Quantifying the accessibility of nodes (locations) in a transport network is considered a holistic measure of transportation and land use and an important research area. In recent years, complex networks have been employed for modeling and analyzing the topology of transport systems and services networks. However, the design of network hierarchy-based accessibility measures has not been fully explored in transport research. Thus, we propose a set of three novel accessibility metrics based on the k-core decomposition of the transport network. Core-based accessibility metrics leverage the network topology by eliciting the hierarchy while accommodating variations like travel cost, travel time, distance, and frequency of service as edge weights. The proposed metrics quantify the accessibility of nodes at different geographical scales, ranging from local to global. We use these metrics to compute the accessibility of geographical locations connected by air transport services in India. Finally, we show that the measures are responsive to changes in the topology of the transport network by analyzing the changes in accessibility for the domestic air services network for both pre-covid and post-covid times.","PeriodicalId":43740,"journal":{"name":"Scientific Journal of Silesian University of Technology-Series Transport","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal of Silesian University of Technology-Series Transport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20858/sjsutst.2023.118.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Scientific analysis of public transport systems at the urban, regional, and national levels is vital in this contemporary, highly connected world. Quantifying the accessibility of nodes (locations) in a transport network is considered a holistic measure of transportation and land use and an important research area. In recent years, complex networks have been employed for modeling and analyzing the topology of transport systems and services networks. However, the design of network hierarchy-based accessibility measures has not been fully explored in transport research. Thus, we propose a set of three novel accessibility metrics based on the k-core decomposition of the transport network. Core-based accessibility metrics leverage the network topology by eliciting the hierarchy while accommodating variations like travel cost, travel time, distance, and frequency of service as edge weights. The proposed metrics quantify the accessibility of nodes at different geographical scales, ranging from local to global. We use these metrics to compute the accessibility of geographical locations connected by air transport services in India. Finally, we show that the measures are responsive to changes in the topology of the transport network by analyzing the changes in accessibility for the domestic air services network for both pre-covid and post-covid times.