Multi-user Remote Lab: Timetable Scheduling Using Simplex Nondominated Sorting Genetic Algorithm

S. M. Zandavi, Yuk Ying Chung, Ali Anaissi
{"title":"Multi-user Remote Lab: Timetable Scheduling Using Simplex Nondominated Sorting Genetic Algorithm","authors":"S. M. Zandavi, Yuk Ying Chung, Ali Anaissi","doi":"10.1145/3437260","DOIUrl":null,"url":null,"abstract":"The scheduling of multi-user remote laboratories is modeled as a multimodal function for the proposed optimization algorithm. The hybrid optimization algorithm, hybridization of the Nelder-Mead Simplex algorithm, and Non-dominated Sorting Genetic Algorithm (NSGA), named Simplex Non-dominated Sorting Genetic Algorithm (SNSGA), is proposed to optimize the timetable problem for the remote laboratories to coordinate shared access. The proposed algorithm utilizes the Simplex algorithm in terms of exploration and NSGA for sorting local optimum points with consideration of potential areas. SNSGA is applied to difficult nonlinear continuous multimodal functions, and its performance is compared with hybrid Simplex Particle Swarm Optimization, Simplex Genetic Algorithm, and other heuristic algorithms. The results show that SNSGA has a competitive performance to address timetable problems.","PeriodicalId":93404,"journal":{"name":"ACM/IMS transactions on data science","volume":"2 1","pages":"1 - 13"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3437260","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IMS transactions on data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The scheduling of multi-user remote laboratories is modeled as a multimodal function for the proposed optimization algorithm. The hybrid optimization algorithm, hybridization of the Nelder-Mead Simplex algorithm, and Non-dominated Sorting Genetic Algorithm (NSGA), named Simplex Non-dominated Sorting Genetic Algorithm (SNSGA), is proposed to optimize the timetable problem for the remote laboratories to coordinate shared access. The proposed algorithm utilizes the Simplex algorithm in terms of exploration and NSGA for sorting local optimum points with consideration of potential areas. SNSGA is applied to difficult nonlinear continuous multimodal functions, and its performance is compared with hybrid Simplex Particle Swarm Optimization, Simplex Genetic Algorithm, and other heuristic algorithms. The results show that SNSGA has a competitive performance to address timetable problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多用户远程实验室:使用单纯形非支配排序遗传算法的时间表调度
针对所提出的优化算法,将多用户远程实验室的调度建模为多模式函数。为了优化远程实验室协调共享访问的时间表问题,提出了混合优化算法,即Nelder-Mead单纯形算法和非支配排序遗传算法(NSGA)的混合优化算法——单纯形非支配排序基因算法(SNSGA)。所提出的算法利用了探索方面的单纯形算法和考虑潜在区域的NSGA对局部最优点进行排序。将SNSGA应用于困难的非线性连续多模态函数,并将其性能与混合单纯形粒子群优化、单纯形遗传算法和其他启发式算法进行了比较。结果表明,SNSGA在解决时间表问题方面具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent Developments in Privacy-Preserving Mining of Clinical Data. PoBery: Possibly-complete Big Data Queries with Probabilistic Data Placement and Scanning A Survey on the Role of Centrality as Seed Nodes for Information Propagation in Large Scale Network DataStorm: Coupled, Continuous Simulations for Complex Urban Environments TabReformer: Unsupervised Representation Learning for Erroneous Data Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1