A novel neck brace to characterize neck mobility impairments following neck dissection in head and neck cancer patients.

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2021-07-12 eCollection Date: 2021-01-01 DOI:10.1017/wtc.2021.8
Biing-Chwen Chang, Haohan Zhang, Sallie Long, Adetokunbo Obayemi, Scott H Troob, Sunil K Agrawal
{"title":"A novel neck brace to characterize neck mobility impairments following neck dissection in head and neck cancer patients.","authors":"Biing-Chwen Chang, Haohan Zhang, Sallie Long, Adetokunbo Obayemi, Scott H Troob, Sunil K Agrawal","doi":"10.1017/wtc.2021.8","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This article introduces a dynamic neck brace to measure the full range of motion (RoM) of the head-neck. This easy-to-wear brace was used, along with surface electromyography (EMG), to study changes in movement characteristics after neck dissection (ND) in a clinical setting.</p><p><strong>Methods: </strong>The brace was inspired by the head-neck anatomy and was designed based on the head-neck movement of 10 healthy individuals. A 6 degrees-of-freedom open-chain structure was adopted to allow full RoM of the head-neck with respect to the shoulders. The physical model was realized by 3D printed materials and inexpensive sensors. Five subjects, who underwent unilateral selective ND, were assessed preoperative and postoperative using this prototype during the head-neck motions. Concurrent EMG measurements of their sternocleidomastoid, splenius capitis, and trapezius muscles were made.</p><p><strong>Results: </strong>Reduced RoM during lateral bending on both sides of the neck was observed after surgery, with a mean angle change of 8.03° on the dissected side (95% confidence intervals [CI], 3.11-12.94) and 9.29° on the nondissected side (95% CI, 4.88-13.69), where CI denotes the confidence interval. Axial rotation showed a reduction in the RoM by 5.37° (95% CI, 2.34-8.39) on the nondissection side. Neck extension showed a slight increase in the RoM by 3.15° (95% CI, 0.81-5.49) postoperatively.</p><p><strong>Conclusions: </strong>This brace may serve as a simple but useful tool in the clinic to document head-neck RoM changes in patients undergoing ND. Such a characterization may help clinicians evaluate the surgical procedure and guide the recovery of patients.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" ","pages":"e8"},"PeriodicalIF":4.7000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936248/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/wtc.2021.8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This article introduces a dynamic neck brace to measure the full range of motion (RoM) of the head-neck. This easy-to-wear brace was used, along with surface electromyography (EMG), to study changes in movement characteristics after neck dissection (ND) in a clinical setting.

Methods: The brace was inspired by the head-neck anatomy and was designed based on the head-neck movement of 10 healthy individuals. A 6 degrees-of-freedom open-chain structure was adopted to allow full RoM of the head-neck with respect to the shoulders. The physical model was realized by 3D printed materials and inexpensive sensors. Five subjects, who underwent unilateral selective ND, were assessed preoperative and postoperative using this prototype during the head-neck motions. Concurrent EMG measurements of their sternocleidomastoid, splenius capitis, and trapezius muscles were made.

Results: Reduced RoM during lateral bending on both sides of the neck was observed after surgery, with a mean angle change of 8.03° on the dissected side (95% confidence intervals [CI], 3.11-12.94) and 9.29° on the nondissected side (95% CI, 4.88-13.69), where CI denotes the confidence interval. Axial rotation showed a reduction in the RoM by 5.37° (95% CI, 2.34-8.39) on the nondissection side. Neck extension showed a slight increase in the RoM by 3.15° (95% CI, 0.81-5.49) postoperatively.

Conclusions: This brace may serve as a simple but useful tool in the clinic to document head-neck RoM changes in patients undergoing ND. Such a characterization may help clinicians evaluate the surgical procedure and guide the recovery of patients.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新型颈部支架,用于描述头颈癌患者颈部剥离后的颈部活动障碍
摘要目的介绍一种测量头颈部全活动范围的动态颈托。这种易于佩戴的支架与表面肌电图(EMG)一起用于研究临床环境中颈清扫术(ND)后运动特征的变化。方法该支架的设计灵感来源于头颈部解剖结构,基于10名健康人的头颈部运动。采用了6个自由度的开放链结构,以允许头部-颈部相对于肩部的完全RoM。物理模型是通过3D打印材料和廉价的传感器实现的。五名接受单侧选择性ND的受试者在头颈部运动过程中使用该原型进行了术前和术后评估。同时对他们的胸锁乳突肌、头夹肌和斜方肌进行肌电图测量。结果手术后,在颈部两侧横向弯曲过程中,RoM降低,解剖侧的平均角度变化为8.03°(95%置信区间[CI],3.11–12.94),非解剖侧为9.29°(95%可信区间,4.88–13.69),其中CI表示置信区间。轴向旋转显示,非截面侧的RoM减少了5.37°(95%CI,2.34–8.39)。颈部伸展显示术后RoM略有增加3.15°(95%CI,0.81-5.49)。结论该支架在临床上可以作为一种简单但有用的工具来记录ND患者的头颈部RoM变化。这样的表征可以帮助临床医生评估手术过程并指导患者的康复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
期刊最新文献
Issue Publication Information Corroborating the Monro-Kellie Principles. High-Performance Flexible Strain Sensor Enhanced by Functionally Partitioned Conductive Network for Intelligent Monitoring of Human Activities Descriptor Engineering for Machine-Learning-Based Performance Prediction in Organic Solar Cells: A Mini Review Realization of High-Performance Solar-Blind Ultraviolet Detection through Substrate and Bandgap Engineering: Construction and Mechanism of the STO/Ga2O3 Heterojunction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1