Snehal S. Joshi, Lezlee Dice, Sukriti Ailavadi, Doris H. D’Souza
{"title":"Antiviral Effects of Quillaja saponaria Extracts Against Human Noroviral Surrogates","authors":"Snehal S. Joshi, Lezlee Dice, Sukriti Ailavadi, Doris H. D’Souza","doi":"10.1007/s12560-023-09550-7","DOIUrl":null,"url":null,"abstract":"<div><p>Aqueous extracts of <i>Quillaja saponaria</i> Molina are US FDA approved as food additives in beverages with known antiviral activity. Due to lack of commercially available vaccines against human noroviruses (HNoVs), alternate methods to prevent their spread and the subsequent emergence of variant strains are being researched. Furthermore, HNoVs are not yet culturable at high enough titers to determine inactivation, therefore surrogates continue to be used. This research analyzed the effect of aqueous <i>Quillaja saponaria</i> extracts (QE) against HNoV surrogates, Tulane virus (TV), murine norovirus (MNV-1), and feline calicivirus (FCV-F9) at room temperature (RT) and 37 °C. Viruses (~ 5 log PFU/mL) were individually treated with 1:1 or 1:5 (v/v) diluted QE (pH ~ 3.75), malic acid control (pH 3.0) or phosphate-buffered saline (pH 7.2, as control) at 37 °C or RT for up to 6 h. Individual treatments were replicated three times using duplicate plaque assays for each treatment. FCV-F9 at ~ 5 log PFU/mL was not detectable after 15 min by 1:1 QE at 37 °C and RT. At RT, 1:5 QE lowered FCV-F9 titers by 2.05, 2.14 and 2.74 log PFU/mL after 0.5 h, 1 h and 2 h, respectively. MNV-1 showed marginal reduction of < 1 log PFU/mL after 15 min with 1:1 or 1:5 QE at 37 °C without any significant reduction at RT, while TV titers decreased by 2.2 log PFU/mL after 30 min and were undetectable after 3 h at 37 °C. Longer incubation with higher QE concentrations may be required for improved antiviral activity against MNV-1 and TV.</p></div>","PeriodicalId":563,"journal":{"name":"Food and Environmental Virology","volume":"15 2","pages":"167 - 175"},"PeriodicalIF":4.1000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Environmental Virology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12560-023-09550-7","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous extracts of Quillaja saponaria Molina are US FDA approved as food additives in beverages with known antiviral activity. Due to lack of commercially available vaccines against human noroviruses (HNoVs), alternate methods to prevent their spread and the subsequent emergence of variant strains are being researched. Furthermore, HNoVs are not yet culturable at high enough titers to determine inactivation, therefore surrogates continue to be used. This research analyzed the effect of aqueous Quillaja saponaria extracts (QE) against HNoV surrogates, Tulane virus (TV), murine norovirus (MNV-1), and feline calicivirus (FCV-F9) at room temperature (RT) and 37 °C. Viruses (~ 5 log PFU/mL) were individually treated with 1:1 or 1:5 (v/v) diluted QE (pH ~ 3.75), malic acid control (pH 3.0) or phosphate-buffered saline (pH 7.2, as control) at 37 °C or RT for up to 6 h. Individual treatments were replicated three times using duplicate plaque assays for each treatment. FCV-F9 at ~ 5 log PFU/mL was not detectable after 15 min by 1:1 QE at 37 °C and RT. At RT, 1:5 QE lowered FCV-F9 titers by 2.05, 2.14 and 2.74 log PFU/mL after 0.5 h, 1 h and 2 h, respectively. MNV-1 showed marginal reduction of < 1 log PFU/mL after 15 min with 1:1 or 1:5 QE at 37 °C without any significant reduction at RT, while TV titers decreased by 2.2 log PFU/mL after 30 min and were undetectable after 3 h at 37 °C. Longer incubation with higher QE concentrations may be required for improved antiviral activity against MNV-1 and TV.
期刊介绍:
Food and Environmental Virology publishes original articles, notes and review articles on any aspect relating to the transmission of pathogenic viruses via the environment (water, air, soil etc.) and foods. This includes epidemiological studies, identification of novel or emerging pathogens, methods of analysis or characterisation, studies on survival and elimination, and development of procedural controls for industrial processes, e.g. HACCP plans. The journal will cover all aspects of this important area, and encompass studies on any human, animal, and plant pathogenic virus which is capable of transmission via the environment or food.