Nathan F. Putman , R. Taylor Beyea , Lowell Andrew R. Iporac , Joaquin Triñanes , Emilie G. Ackerman , Maria J. Olascoaga , Christian M. Appendini , Jaime Arriaga , Ligia Collado-Vides , Rick Lumpkin , Chuanmin Hu , Gustavo Goni
{"title":"Improving satellite monitoring of coastal inundations of pelagic Sargassum algae with wind and citizen science data","authors":"Nathan F. Putman , R. Taylor Beyea , Lowell Andrew R. Iporac , Joaquin Triñanes , Emilie G. Ackerman , Maria J. Olascoaga , Christian M. Appendini , Jaime Arriaga , Ligia Collado-Vides , Rick Lumpkin , Chuanmin Hu , Gustavo Goni","doi":"10.1016/j.aquabot.2023.103672","DOIUrl":null,"url":null,"abstract":"<div><p>Massive blooms of pelagic Sargassum algae have caused serious problems to coastal communities and ecosystems throughout the tropical Atlantic, Caribbean Sea, and Gulf of Mexico since 2011. Efforts to monitor and predict these occurrences are challenging owing to the vast area impacted and the complexities associated with the proliferation and movement of Sargassum. Sargassum Inundation Reports (SIRs) were first produced in 2019 to estimate the potential risk to coastlines throughout the Intra-American Sea at weekly intervals at 10 km resolution. SIRs use satellite-based data products to estimate beaching risk from the amount of offshore Sargassum (quantified by a Floating Algal density index). Here we examine whether including wind metrics improves the correspondence between the offshore Floating Algal density index and observations of Sargassum along the coastline. For coastal observations, we quantified the percent coverage of Sargassum in photos obtained from the citizen science project \"Sargassum Watch\" that collects time-stamped, georeferenced photos at beaches throughout the region. Region-wide analyses indicate that including shoreward wind velocity with SIR risk indices greatly improves the correspondence with coastal observations of Sargassum beaching compared to SIR risk indices alone. Site-specific analyses of photos from southeast Florida, USA, and data from a continuous video monitoring study at Puerto Morelos, Mexico, suggest potential uncertainties in the suite of factors controlling Sargassum beaching. Nonetheless, the inclusion of wind velocity in the SIR algorithm appears to be a promising avenue for improving regional risk indices.</p></div>","PeriodicalId":8273,"journal":{"name":"Aquatic Botany","volume":"188 ","pages":"Article 103672"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304377023000578","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Massive blooms of pelagic Sargassum algae have caused serious problems to coastal communities and ecosystems throughout the tropical Atlantic, Caribbean Sea, and Gulf of Mexico since 2011. Efforts to monitor and predict these occurrences are challenging owing to the vast area impacted and the complexities associated with the proliferation and movement of Sargassum. Sargassum Inundation Reports (SIRs) were first produced in 2019 to estimate the potential risk to coastlines throughout the Intra-American Sea at weekly intervals at 10 km resolution. SIRs use satellite-based data products to estimate beaching risk from the amount of offshore Sargassum (quantified by a Floating Algal density index). Here we examine whether including wind metrics improves the correspondence between the offshore Floating Algal density index and observations of Sargassum along the coastline. For coastal observations, we quantified the percent coverage of Sargassum in photos obtained from the citizen science project "Sargassum Watch" that collects time-stamped, georeferenced photos at beaches throughout the region. Region-wide analyses indicate that including shoreward wind velocity with SIR risk indices greatly improves the correspondence with coastal observations of Sargassum beaching compared to SIR risk indices alone. Site-specific analyses of photos from southeast Florida, USA, and data from a continuous video monitoring study at Puerto Morelos, Mexico, suggest potential uncertainties in the suite of factors controlling Sargassum beaching. Nonetheless, the inclusion of wind velocity in the SIR algorithm appears to be a promising avenue for improving regional risk indices.
期刊介绍:
Aquatic Botany offers a platform for papers relevant to a broad international readership on fundamental and applied aspects of marine and freshwater macroscopic plants in a context of ecology or environmental biology. This includes molecular, biochemical and physiological aspects of macroscopic aquatic plants as well as the classification, structure, function, dynamics and ecological interactions in plant-dominated aquatic communities and ecosystems. It is an outlet for papers dealing with research on the consequences of disturbance and stressors (e.g. environmental fluctuations and climate change, pollution, grazing and pathogens), use and management of aquatic plants (plant production and decomposition, commercial harvest, plant control) and the conservation of aquatic plant communities (breeding, transplantation and restoration). Specialized publications on certain rare taxa or papers on aquatic macroscopic plants from under-represented regions in the world can also find their place, subject to editor evaluation. Studies on fungi or microalgae will remain outside the scope of Aquatic Botany.