H. Walker, Joanna E. Jones, N. Swarts, F. Kerslake
{"title":"Manipulating Nitrogen and Water Resources for Improved Cool Climate Vine to Wine Quality","authors":"H. Walker, Joanna E. Jones, N. Swarts, F. Kerslake","doi":"10.5344/ajev.2021.21004","DOIUrl":null,"url":null,"abstract":"Low yeast assimilable nitrogen (YAN) concentrations (<140 mg/N/L) can produce wines with inferior aroma and flavor, regardless of supplemental nitrogen (N) additions in the winery. The impact of doubling commercial field N and irrigation rates was explored in Vitis vinifera L. cv. Chardonnay and Pinot noir over three growing seasons (2016 to 2019) in Southern Tasmania, Australia, to improve YAN concentrations and observe the concurrent influence on vine canopy, yield, and grape and wine composition. Six combinations of irrigation and N rates were applied to 20 vines for each treatment combination and replicated across both cultivars. The treatments included the standard irrigation rate (~530 L/vine/year) / control N (0 kg/N/ha/year) rate, standard irrigation / standard commercial N rate (~18 kg/N/ha/year), standard irrigation / double commercial N rate (~36 kg/N/ha/year), double irrigation rate (~1060 L/vine/year) / control N, double irrigation / standard N, and double irrigation / double N. Analysis of variance was used to determine main treatment effects and treatment interactions of the measured variables for a subset of the vine population in each growing season. Increasing N rate improved YAN concentrations in both cultivars in two of three growing seasons, with the double N rate associated with increasing YAN to acceptable (>140 mg/N/L) levels. Irrigation had no impact on YAN concentrations. Treatment influences on vine vegetative growth, yield, and grape and wine composition were marginal, inconsistent, and largely influenced by climatic conditions. Cool-climate grapegrowers would benefit from applying more N in the vineyard around veraison to improve YAN without stimulating vigor or reducing the quality of grape and wine chemical composition. Increasing irrigation rates may be advantageous in seasons with high crop load; however, current commercial irrigation rates are considered adequate.","PeriodicalId":7461,"journal":{"name":"American Journal of Enology and Viticulture","volume":"73 1","pages":"11 - 25"},"PeriodicalIF":2.2000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Enology and Viticulture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5344/ajev.2021.21004","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Low yeast assimilable nitrogen (YAN) concentrations (<140 mg/N/L) can produce wines with inferior aroma and flavor, regardless of supplemental nitrogen (N) additions in the winery. The impact of doubling commercial field N and irrigation rates was explored in Vitis vinifera L. cv. Chardonnay and Pinot noir over three growing seasons (2016 to 2019) in Southern Tasmania, Australia, to improve YAN concentrations and observe the concurrent influence on vine canopy, yield, and grape and wine composition. Six combinations of irrigation and N rates were applied to 20 vines for each treatment combination and replicated across both cultivars. The treatments included the standard irrigation rate (~530 L/vine/year) / control N (0 kg/N/ha/year) rate, standard irrigation / standard commercial N rate (~18 kg/N/ha/year), standard irrigation / double commercial N rate (~36 kg/N/ha/year), double irrigation rate (~1060 L/vine/year) / control N, double irrigation / standard N, and double irrigation / double N. Analysis of variance was used to determine main treatment effects and treatment interactions of the measured variables for a subset of the vine population in each growing season. Increasing N rate improved YAN concentrations in both cultivars in two of three growing seasons, with the double N rate associated with increasing YAN to acceptable (>140 mg/N/L) levels. Irrigation had no impact on YAN concentrations. Treatment influences on vine vegetative growth, yield, and grape and wine composition were marginal, inconsistent, and largely influenced by climatic conditions. Cool-climate grapegrowers would benefit from applying more N in the vineyard around veraison to improve YAN without stimulating vigor or reducing the quality of grape and wine chemical composition. Increasing irrigation rates may be advantageous in seasons with high crop load; however, current commercial irrigation rates are considered adequate.
期刊介绍:
The American Journal of Enology and Viticulture (AJEV), published quarterly, is an official journal of the American Society for Enology and Viticulture (ASEV) and is the premier journal in the English language dedicated to scientific research on winemaking and grapegrowing. AJEV publishes full-length research papers, literature reviews, research notes, and technical briefs on various aspects of enology and viticulture, including wine chemistry, sensory science, process engineering, wine quality assessments, microbiology, methods development, plant pathogenesis, diseases and pests of grape, rootstock and clonal evaluation, effect of field practices, and grape genetics and breeding. All papers are peer reviewed, and authorship of papers is not limited to members of ASEV. The science editor, along with the viticulture, enology, and associate editors, are drawn from academic and research institutions worldwide and guide the content of the Journal.