Robustness of an airport double layer space truss roof

IF 1.1 Q4 MECHANICS Curved and Layered Structures Pub Date : 2021-01-01 DOI:10.1515/cls-2021-0004
G. Piana, V. De Biagi, B. Chiaia
{"title":"Robustness of an airport double layer space truss roof","authors":"G. Piana, V. De Biagi, B. Chiaia","doi":"10.1515/cls-2021-0004","DOIUrl":null,"url":null,"abstract":"Abstract Robustness analyses are very well referenced for concrete or steel frame structures but less for spatial structures; in particular for truss roofs. Here, we present a robustness analysis of an existing airport space structure. A finite element model was implemented based on the original design documents, where the structure is modeled as a spatial truss composed of elastic, perfectly hinged bars. With respect to five main design loading conditions, the most stressed bars among the top layer, the bottom layer and the diagonals, were alternately removed, and the stress variations in the remaining bars monitored. A total of fifteen analyses with removal of either the most stretched or the most compressed bar were run. Also, reductions of the most stressed bars’ axial stiffness were considered to investigate the effects of such local reductions on the global structural flexibility. Linearized global buckling analyses were also conducted to point out again the effect of a global loss of stiffness, due to local losses. The study gives basic information about the general behavior of the structure in case of failure, or damage, of a key element. Results show that this kind of lightweight and efficient structures are very sensitive to local losses, since their redistribution capabilities are not large.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":"8 1","pages":"36 - 46"},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cls-2021-0004","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2021-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Robustness analyses are very well referenced for concrete or steel frame structures but less for spatial structures; in particular for truss roofs. Here, we present a robustness analysis of an existing airport space structure. A finite element model was implemented based on the original design documents, where the structure is modeled as a spatial truss composed of elastic, perfectly hinged bars. With respect to five main design loading conditions, the most stressed bars among the top layer, the bottom layer and the diagonals, were alternately removed, and the stress variations in the remaining bars monitored. A total of fifteen analyses with removal of either the most stretched or the most compressed bar were run. Also, reductions of the most stressed bars’ axial stiffness were considered to investigate the effects of such local reductions on the global structural flexibility. Linearized global buckling analyses were also conducted to point out again the effect of a global loss of stiffness, due to local losses. The study gives basic information about the general behavior of the structure in case of failure, or damage, of a key element. Results show that this kind of lightweight and efficient structures are very sensitive to local losses, since their redistribution capabilities are not large.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机场双层空间特拉斯屋盖的鲁棒性
摘要鲁棒性分析在混凝土或钢框架结构中有很好的参考价值,但在空间结构中却很少;特别是特拉斯屋顶。在这里,我们对现有机场空间结构进行了稳健性分析。在原始设计文件的基础上建立了有限元模型,将结构建模为空间特拉斯,由弹性、完全铰接的杆组成。关于五种主要设计荷载条件,顶层、底层和对角线中受力最大的钢筋被交替移除,并监测其余钢筋的应力变化。总共进行了15次分析,去除了拉伸程度最高或压缩程度最高的棒材。此外,考虑了最大应力杆的轴向刚度的降低,以研究这种局部降低对整体结构柔性的影响。还进行了线性化的整体屈曲分析,以再次指出由于局部损失导致的整体刚度损失的影响。该研究提供了在关键元件失效或损坏的情况下结构的一般行为的基本信息。结果表明,这种轻质高效的结构对局部损失非常敏感,因为它们的再分配能力不大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
13.30%
发文量
25
审稿时长
14 weeks
期刊介绍: The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.
期刊最新文献
Flutter investigation and deep learning prediction of FG composite wing reinforced with carbon nanotube Structural assessment of 40 ft mini LNG ISO tank: Effect of structural frame design on the strength performance MD-based study on the deformation process of engineered Ni–Al core–shell nanowires: Toward an understanding underlying deformation mechanisms Studying the effect of embedded length strength of concrete and diameter of anchor on shear performance between old and new concrete Thin-walled cylindrical shells in engineering designs and critical infrastructures: A systematic review based on the loading response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1