{"title":"Estimating Radiation Scattering Around Plasmonic Nanowires Using Engineered Geometric Features","authors":"Mine Kaya, S. Hajimirza","doi":"10.1115/1.4055994","DOIUrl":null,"url":null,"abstract":"\n This study offers an analytical estimation model for radiative scattering at nanoscale. The study focuses on isolated nanowires of arbitrary-shape cross-sections and uses predictive geometric features and statistical regression to model the wavelength-dependent light-particle interaction. This work proposes to estimate the radiative properties of nanowires based on engineered geometric features, potentially leading to new understandings of how the geometric attributes impact light scattering at nanoscale. A predictive model is designed and tested for estimating radiative scattering around nanowires. Random polygon-shaped cross-sections with high degrees of freedom are chosen as train and test the models. The derived model can successfully explain scattering across out-sample synthetic plasmonic objects with a 90% R-squared metric.","PeriodicalId":17124,"journal":{"name":"Journal of Solar Energy Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solar Energy Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055994","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
This study offers an analytical estimation model for radiative scattering at nanoscale. The study focuses on isolated nanowires of arbitrary-shape cross-sections and uses predictive geometric features and statistical regression to model the wavelength-dependent light-particle interaction. This work proposes to estimate the radiative properties of nanowires based on engineered geometric features, potentially leading to new understandings of how the geometric attributes impact light scattering at nanoscale. A predictive model is designed and tested for estimating radiative scattering around nanowires. Random polygon-shaped cross-sections with high degrees of freedom are chosen as train and test the models. The derived model can successfully explain scattering across out-sample synthetic plasmonic objects with a 90% R-squared metric.
期刊介绍:
The Journal of Solar Energy Engineering - Including Wind Energy and Building Energy Conservation - publishes research papers that contain original work of permanent interest in all areas of solar energy and energy conservation, as well as discussions of policy and regulatory issues that affect renewable energy technologies and their implementation. Papers that do not include original work, but nonetheless present quality analysis or incremental improvements to past work may be published as Technical Briefs. Review papers are accepted but should be discussed with the Editor prior to submission. The Journal also publishes a section called Solar Scenery that features photographs or graphical displays of significant new installations or research facilities.