Lissa de Souza Campos, Claudio Dappiaggi, Luca Sinibaldi
{"title":"Hidden freedom in the mode expansion on static spacetimes","authors":"Lissa de Souza Campos, Claudio Dappiaggi, Luca Sinibaldi","doi":"10.1007/s10714-023-03099-3","DOIUrl":null,"url":null,"abstract":"<div><p>We review the construction of ground states focusing on a real scalar field whose dynamics is ruled by the Klein–Gordon equation on a large class of static spacetimes. As in the analysis of the classical equations of motion, when enough isometries are present, via a mode expansion the construction of two-point correlation functions boils down to solving a second order, ordinary differential equation on an interval of the real line. Using the language of Sturm–Liouville theory, most compelling is the scenario when one endpoint of such interval is classified as a limit circle, as it often happens when one is working on globally hyperbolic spacetimes with a timelike boundary. In this case, beyond initial data, one needs to specify a boundary condition both to have a well-defined classical dynamics and to select a corresponding ground state. Here, we take into account boundary conditions of Robin type by using well-known results from Sturm–Liouville theory, but we go beyond the existing literature by exploring an unnoticed freedom that emerges from the intrinsic arbitrariness of secondary solutions at a limit circle endpoint. Accordingly, we show that infinitely many one-parameter families of sensible dynamics are admissible. In other words, we emphasize that physical constraints guaranteeing the construction of ground states do not, in general, fix one such state unambiguously. In addition, we provide, in full detail, an example on <span>\\((1 + 1)\\)</span>-half Minkowski spacetime to spell out the rationale in a specific scenario where analytic formulae can be obtained.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"55 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-023-03099-3.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-023-03099-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1
Abstract
We review the construction of ground states focusing on a real scalar field whose dynamics is ruled by the Klein–Gordon equation on a large class of static spacetimes. As in the analysis of the classical equations of motion, when enough isometries are present, via a mode expansion the construction of two-point correlation functions boils down to solving a second order, ordinary differential equation on an interval of the real line. Using the language of Sturm–Liouville theory, most compelling is the scenario when one endpoint of such interval is classified as a limit circle, as it often happens when one is working on globally hyperbolic spacetimes with a timelike boundary. In this case, beyond initial data, one needs to specify a boundary condition both to have a well-defined classical dynamics and to select a corresponding ground state. Here, we take into account boundary conditions of Robin type by using well-known results from Sturm–Liouville theory, but we go beyond the existing literature by exploring an unnoticed freedom that emerges from the intrinsic arbitrariness of secondary solutions at a limit circle endpoint. Accordingly, we show that infinitely many one-parameter families of sensible dynamics are admissible. In other words, we emphasize that physical constraints guaranteeing the construction of ground states do not, in general, fix one such state unambiguously. In addition, we provide, in full detail, an example on \((1 + 1)\)-half Minkowski spacetime to spell out the rationale in a specific scenario where analytic formulae can be obtained.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.