Exploring Approaches for Estimating Parameters in Cognitive Diagnosis Models with Small Sample Sizes

Psych Pub Date : 2023-04-27 DOI:10.3390/psych5020023
M. Sorrel, Scarlett Escudero, P. Nájera, R. S. Kreitchmann, Ramsés Vázquez-Lira
{"title":"Exploring Approaches for Estimating Parameters in Cognitive Diagnosis Models with Small Sample Sizes","authors":"M. Sorrel, Scarlett Escudero, P. Nájera, R. S. Kreitchmann, Ramsés Vázquez-Lira","doi":"10.3390/psych5020023","DOIUrl":null,"url":null,"abstract":"Cognitive diagnostic models (CDMs) are increasingly being used in various assessment contexts to identify cognitive processes and provide tailored feedback. However, the most commonly used estimation method for CDMs, marginal maximum likelihood estimation with Expectation–Maximization (MMLE-EM), can present difficulties when sample sizes are small. This study compares the results of different estimation methods for CDMs under varying sample sizes using simulated and empirical data. The methods compared include MMLE-EM, Bayes modal, Markov chain Monte Carlo, a non-parametric method, and a parsimonious parametric model such as Restricted DINA. We varied the sample size, and assessed the bias in the estimation of item parameters, the precision in attribute classification, the bias in the reliability estimate, and computational cost. The findings suggest that alternative estimation methods are preferred over MMLE-EM under low sample-size conditions, whereas comparable results are obtained under large sample-size conditions. Practitioners should consider using alternative estimation methods when working with small samples to obtain more accurate estimates of CDM parameters. This study aims to maximize the potential of CDMs by providing guidance on the estimation of the parameters.","PeriodicalId":93139,"journal":{"name":"Psych","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psych","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/psych5020023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cognitive diagnostic models (CDMs) are increasingly being used in various assessment contexts to identify cognitive processes and provide tailored feedback. However, the most commonly used estimation method for CDMs, marginal maximum likelihood estimation with Expectation–Maximization (MMLE-EM), can present difficulties when sample sizes are small. This study compares the results of different estimation methods for CDMs under varying sample sizes using simulated and empirical data. The methods compared include MMLE-EM, Bayes modal, Markov chain Monte Carlo, a non-parametric method, and a parsimonious parametric model such as Restricted DINA. We varied the sample size, and assessed the bias in the estimation of item parameters, the precision in attribute classification, the bias in the reliability estimate, and computational cost. The findings suggest that alternative estimation methods are preferred over MMLE-EM under low sample-size conditions, whereas comparable results are obtained under large sample-size conditions. Practitioners should consider using alternative estimation methods when working with small samples to obtain more accurate estimates of CDM parameters. This study aims to maximize the potential of CDMs by providing guidance on the estimation of the parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小样本量认知诊断模型参数估计方法探讨
认知诊断模型(CDM)越来越多地被用于各种评估环境中,以识别认知过程并提供量身定制的反馈。然而,CDM最常用的估计方法,具有期望-最大化的边际最大似然估计(MMLE-EM),在样本量较小时可能会遇到困难。本研究使用模拟和经验数据比较了不同样本量下CDM估计方法的结果。比较的方法包括MMLE-EM、Bayes模态、马尔可夫链蒙特卡罗、非参数方法和简约参数模型(如Restricted DINA)。我们改变了样本量,并评估了项目参数估计的偏差、属性分类的精度、可靠性估计的偏差和计算成本。研究结果表明,在低样本量条件下,替代估计方法比MMLE-EM更可取,而在大样本量情况下获得了可比较的结果。从业者在处理小样本时应考虑使用替代估计方法,以获得更准确的CDM参数估计值。本研究旨在通过提供参数估计指导,最大限度地发挥CDM的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Robust Indicator Mean-Based Method for Estimating Generalizability Theory Absolute Error and Related Dependability Indices within Structural Equation Modeling Frameworks Qualitative Pilot Interventions for the Enhancement of Mental Health Support in Doctoral Students Walking Forward Together—The Next Step: Indigenous Youth Mental Health and the Climate Crisis Walking Forward Together—The Next Step: Indigenous Youth Mental Health and the Climate Crisis The IADC Grief Questionnaire as a Brief Measure for Complicated Grief in Clinical Practice and Research: A Preliminary Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1