{"title":"Estimating Heterogeneous Treatment Effects Within Latent Class Multilevel Models: A Bayesian Approach","authors":"Weicong Lyu, Jee-Seon Kim, Youmi Suk","doi":"10.3102/10769986221115446","DOIUrl":null,"url":null,"abstract":"This article presents a latent class model for multilevel data to identify latent subgroups and estimate heterogeneous treatment effects. Unlike sequential approaches that partition data first and then estimate average treatment effects (ATEs) within classes, we employ a Bayesian procedure to jointly estimate mixing probability, selection, and outcome models so that misclassification does not obstruct estimation of treatment effects. Simulation demonstrates that the proposed method finds the correct number of latent classes, estimates class-specific treatment effects well, and provides proper posterior standard deviations and credible intervals of ATEs. We apply this method to Trends in International Mathematics and Science Study data to investigate the effects of private science lessons on achievement scores and then find two latent classes, one with zero ATE and the other with positive ATE.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":"48 1","pages":"3 - 36"},"PeriodicalIF":1.9000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/10769986221115446","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents a latent class model for multilevel data to identify latent subgroups and estimate heterogeneous treatment effects. Unlike sequential approaches that partition data first and then estimate average treatment effects (ATEs) within classes, we employ a Bayesian procedure to jointly estimate mixing probability, selection, and outcome models so that misclassification does not obstruct estimation of treatment effects. Simulation demonstrates that the proposed method finds the correct number of latent classes, estimates class-specific treatment effects well, and provides proper posterior standard deviations and credible intervals of ATEs. We apply this method to Trends in International Mathematics and Science Study data to investigate the effects of private science lessons on achievement scores and then find two latent classes, one with zero ATE and the other with positive ATE.
期刊介绍:
Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.