Pugheadedness in Fishes

IF 6.4 1区 农林科学 Q1 FISHERIES Reviews in Fisheries Science & Aquaculture Pub Date : 2021-08-11 DOI:10.1080/23308249.2021.1957772
J. Näslund, L. Jawad
{"title":"Pugheadedness in Fishes","authors":"J. Näslund, L. Jawad","doi":"10.1080/23308249.2021.1957772","DOIUrl":null,"url":null,"abstract":"Abstract This review summarizes the current state of knowledge of pugheadedness in fish. Records in the scientific literature range from detailed descriptions to brief notes and mere remarks. In total, at least 164 species from 60 families were identified to exhibit pugheadedness, with records published over a span of 465 years (1555 − 2020). The main osteological feature behind pugheadedness appears to be shortening or deformation of the parasphenoid bone, which leads to additional deformations of the ethmovomer- and frontal region. Several other deformations and abnormalities of other cranial bones, eyes, and tongue are occasionally observed, depending on the severity of the pugheadedness. Possible cases in elasmobranchs are also encountered, although the developmental causation may differ from actinopterygians, since their crania have a different organization. Natural cases of pugheadedness are found world-wide, covering a wide range of environments and lifestyles (freshwater-, brackish- and marine environments; benthic, neritic and pelagic species). Cases are found in all life-stages, from embryo to mature adults, suggesting that it does not necessarily lead to early-life mortality. There is some evidence for natural selection acting against pugheaded individuals, likely because of e.g. inappropriately functioning mouth parts, sense organs, and possibly brain deformation. High numbers of pugheads are mainly found in aquaculture, but moderate numbers have been found at some localities also in the wild. Abnormally high occurrence in the wild is commonly attributed to pollution, non-normal water chemistry parameters, or temperature. The causation, however, it typically speculated upon. Based on the reviewed literature, there is support for several causative factors, including genetic mutation and embryonic environmental conditions (toxic and non-toxic) affecting development. Pugheadedness, as the term has been used in the literature, is not a single well-defined pathology, but rather a suite of pathological conditions with similar phenotypic expression.","PeriodicalId":21183,"journal":{"name":"Reviews in Fisheries Science & Aquaculture","volume":"30 1","pages":"306 - 329"},"PeriodicalIF":6.4000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Fisheries Science & Aquaculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/23308249.2021.1957772","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract This review summarizes the current state of knowledge of pugheadedness in fish. Records in the scientific literature range from detailed descriptions to brief notes and mere remarks. In total, at least 164 species from 60 families were identified to exhibit pugheadedness, with records published over a span of 465 years (1555 − 2020). The main osteological feature behind pugheadedness appears to be shortening or deformation of the parasphenoid bone, which leads to additional deformations of the ethmovomer- and frontal region. Several other deformations and abnormalities of other cranial bones, eyes, and tongue are occasionally observed, depending on the severity of the pugheadedness. Possible cases in elasmobranchs are also encountered, although the developmental causation may differ from actinopterygians, since their crania have a different organization. Natural cases of pugheadedness are found world-wide, covering a wide range of environments and lifestyles (freshwater-, brackish- and marine environments; benthic, neritic and pelagic species). Cases are found in all life-stages, from embryo to mature adults, suggesting that it does not necessarily lead to early-life mortality. There is some evidence for natural selection acting against pugheaded individuals, likely because of e.g. inappropriately functioning mouth parts, sense organs, and possibly brain deformation. High numbers of pugheads are mainly found in aquaculture, but moderate numbers have been found at some localities also in the wild. Abnormally high occurrence in the wild is commonly attributed to pollution, non-normal water chemistry parameters, or temperature. The causation, however, it typically speculated upon. Based on the reviewed literature, there is support for several causative factors, including genetic mutation and embryonic environmental conditions (toxic and non-toxic) affecting development. Pugheadedness, as the term has been used in the literature, is not a single well-defined pathology, but rather a suite of pathological conditions with similar phenotypic expression.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鱼类的好斗性
摘要本文综述了目前有关鱼类刺头性的研究现状。科学文献中的记录从详细的描述到简短的注释和简单的评论都有。在465年(1555 ~ 2020年)的时间跨度内,共鉴定出60科至少164种具有斗头性。骨质疏松背后的主要骨学特征似乎是副突骨的缩短或变形,这导致椎体和额叶区域的额外变形。有时还会观察到其他颅骨、眼睛和舌头的变形和异常,这取决于肿胀的严重程度。尽管发育原因可能与放光翼目动物不同,因为它们的颅骨有不同的组织,但在无鳃目动物中也会遇到可能的病例。在世界范围内都可以发现这种疾病的自然情况,涉及各种环境和生活方式(淡水、咸淡水和海洋环境;底栖、浅海和远洋物种)。从胚胎到成年的所有生命阶段都可以发现病例,这表明它不一定会导致生命早期死亡。有一些证据表明,自然选择不利于头脑迟钝的人,可能是因为他们的口部、感觉器官功能不正常,可能还有大脑变形。大量的大头鱼主要见于水产养殖中,但在一些地方也可在野外发现适量的大头鱼。在野外异常高的发生率通常归因于污染,不正常的水化学参数,或温度。然而,它通常推测因果关系。根据文献综述,有几个致病因素,包括基因突变和胚胎环境条件(有毒和无毒)影响发育的支持。在文献中使用的术语“puheadeness”并不是一种明确定义的病理学,而是一套具有相似表型表达的病理条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.20
自引率
0.90%
发文量
19
期刊介绍: Reviews in Fisheries Science & Aquaculture provides an important forum for the publication of up-to-date reviews covering a broad range of subject areas including management, aquaculture, taxonomy, behavior, stock identification, genetics, nutrition, and physiology. Issues concerning finfish and aquatic invertebrates prized for their economic or recreational importance, their value as indicators of environmental health, or their natural beauty are addressed. An important resource that keeps you apprised of the latest changes in the field, each issue of Reviews in Fisheries Science & Aquaculture presents useful information to fisheries and aquaculture scientists in academia, state and federal natural resources agencies, and the private sector.
期刊最新文献
Fish for Health: Role of Fish in Global Food and Animal Protein Supply Research in Aquaculture Nutrition: What Makes an Experimental Feeding Trial Successful? Reestablishing Histopathology as an Essential Component of Health Assessment for Farmed Shrimp in the Era of Molecular Diagnostics Understanding the Threats to Fish Migration: Applying the Global Swimways Concept to the Lower Mekong Ecosystem Services Provided by Seaweed Cultivation: State of the Art, Knowledge Gaps, Constraints and Future Needs for Achieving Maximum Potential in Europe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1