A new numerical method for 1-D backward stochastic differential equations without using conditional expectations

IF 0.3 Q4 STATISTICS & PROBABILITY Random Operators and Stochastic Equations Pub Date : 2020-03-10 DOI:10.1515/rose-2020-2030
A. Sghir, Sokaina Hadiri
{"title":"A new numerical method for 1-D backward stochastic differential equations without using conditional expectations","authors":"A. Sghir, Sokaina Hadiri","doi":"10.1515/rose-2020-2030","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we propose a new numerical method for 1-D backward stochastic differential equations (BSDEs for short) without using conditional expectations. The approximations of the solutions are obtained as solutions of a backward linear system generated by the terminal conditions. Our idea is inspired from the extended Kalman filter to non-linear system models by using a linear approximation around deterministic nominal reference trajectories.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"28 1","pages":"79 - 91"},"PeriodicalIF":0.3000,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/rose-2020-2030","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2020-2030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract In this paper, we propose a new numerical method for 1-D backward stochastic differential equations (BSDEs for short) without using conditional expectations. The approximations of the solutions are obtained as solutions of a backward linear system generated by the terminal conditions. Our idea is inspired from the extended Kalman filter to non-linear system models by using a linear approximation around deterministic nominal reference trajectories.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无条件期望一维倒向随机微分方程的一种新的数值解法
摘要本文提出了一种新的不使用条件期望的一维倒向随机微分方程(BSDEs)的数值求解方法。解的近似形式是由末端条件产生的后向线性系统的解。我们的想法是从扩展卡尔曼滤波到非线性系统模型的启发,通过在确定性标称参考轨迹周围使用线性近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
期刊最新文献
On a reaction diffusion problem with a moving impulse on boundary Backward doubly stochastic differential equations driven by fractional Brownian motion with stochastic integral-Lipschitz coefficients Existence results for some stochastic functional integrodifferential systems driven by Rosenblatt process On Ulam type of stability for stochastic integral equations with Volterra noise Existence and uniqueness for reflected BSDE with multivariate point process and right upper semicontinuous obstacle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1