Data Breach CAT Bonds: Modeling and Pricing

IF 1.4 Q3 BUSINESS, FINANCE North American Actuarial Journal Pub Date : 2021-05-04 DOI:10.1080/10920277.2021.1886948
Maochao Xu, Yiying Zhang
{"title":"Data Breach CAT Bonds: Modeling and Pricing","authors":"Maochao Xu, Yiying Zhang","doi":"10.1080/10920277.2021.1886948","DOIUrl":null,"url":null,"abstract":"Data breaches cause millions of dollars in financial losses each year. The insurance industry has been exploring the ways to transfer such extreme risk. In this work, we investigate data breach catastrophe (CAT) bonds via developing a multiperiod pricing model. It is found that the nonstationary extreme value model can capture the statistical pattern of the monthly maximum of data breach size very well and, in particular, a positive time trend is discovered. For the financial risks, data-driven time series approaches are proposed to model the complex patterns exhibited by the financial data, which are different from those in the literature. Simulation studies are performed to determine the bond prices and cash flows. Our results show that the data breach CAT bond can be an attractive financial product and an effective instrument for transferring the extreme data breach risk.","PeriodicalId":46812,"journal":{"name":"North American Actuarial Journal","volume":"25 1","pages":"543 - 561"},"PeriodicalIF":1.4000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10920277.2021.1886948","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Actuarial Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10920277.2021.1886948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 5

Abstract

Data breaches cause millions of dollars in financial losses each year. The insurance industry has been exploring the ways to transfer such extreme risk. In this work, we investigate data breach catastrophe (CAT) bonds via developing a multiperiod pricing model. It is found that the nonstationary extreme value model can capture the statistical pattern of the monthly maximum of data breach size very well and, in particular, a positive time trend is discovered. For the financial risks, data-driven time series approaches are proposed to model the complex patterns exhibited by the financial data, which are different from those in the literature. Simulation studies are performed to determine the bond prices and cash flows. Our results show that the data breach CAT bond can be an attractive financial product and an effective instrument for transferring the extreme data breach risk.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据泄露CAT债券:建模和定价
数据泄露每年造成数百万美元的经济损失。保险业一直在探索转移这种极端风险的方法。在这项工作中,我们通过开发一个多时期定价模型来研究数据泄露灾难(CAT)债券。研究发现,非平稳极值模型可以很好地捕捉月最大数据泄露规模的统计模式,特别是发现了正的时间趋势。针对金融风险,本文提出了不同于文献的数据驱动时间序列方法,对金融数据所表现出的复杂模式进行建模。进行模拟研究以确定债券价格和现金流量。研究结果表明,数据泄露CAT债券是一种极具吸引力的金融产品,是转移极端数据泄露风险的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
14.30%
发文量
38
期刊最新文献
A Proposed Condition-Based Risk Adjustment System for the Colombian Health Insurance Program Credibility Theory for Variance Premium Principle Discussion on “Sample Size Determination for Credibility Estimation,” by Liang Hong, Volume 26(4) Author’s Reply to Discussion on “Sample Size Determination for Credibility Estimation” Bequests and the Demand for Life Insurance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1