Mechanical Behaviour and Stress-Strain Recovery Characteristics of Expanded Polypropylene

IF 2.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Geosynthetics International Pub Date : 2022-09-29 DOI:10.1680/jgein.21.00061
Z. Maqsood, J. Koseki, H. Kyokawa
{"title":"Mechanical Behaviour and Stress-Strain Recovery Characteristics of Expanded Polypropylene","authors":"Z. Maqsood, J. Koseki, H. Kyokawa","doi":"10.1680/jgein.21.00061","DOIUrl":null,"url":null,"abstract":"Expanded Polypropylene (EPP) foam has been widely recognized as an energy absorbing material, and it is routinely used for variety of industrial applications. However, EPP foam has a relatively limited scope in the construction industry, especially for load-bearing applications. To address this aspect, the mechanical behaviour of EPP foam was examined under unconfined conditions in this study, and the effects of different preloading/precompression strain histories (5% to 60%) on the stress-strain response and strain energy characteristics of EPP were evaluated. Additionally, the stress-strain recovery behaviour of EPP foam having different preloading histories was also studied while considering the effects of recovery time after preloading (0 to 28 Days). The results suggest that EPP foam subjected to different preloading histories has identical patterns of stress-strain response as of other conventional closed-cell polymeric foams, such as Expanded Polystyrene (EPS) foam, and EPP can adequately be used for load-bearing applications under the recommended design limits. Furthermore, noticeable recovery in the stress-strain response of EPP was also witnessed during the initial 14 days after preloading. Based on these findings, it is anticipated that the promising stress-strain recovery characteristics of EPP foam enable it to be reused, even after experiencing large in-situ deformations.","PeriodicalId":12616,"journal":{"name":"Geosynthetics International","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosynthetics International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1680/jgein.21.00061","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Expanded Polypropylene (EPP) foam has been widely recognized as an energy absorbing material, and it is routinely used for variety of industrial applications. However, EPP foam has a relatively limited scope in the construction industry, especially for load-bearing applications. To address this aspect, the mechanical behaviour of EPP foam was examined under unconfined conditions in this study, and the effects of different preloading/precompression strain histories (5% to 60%) on the stress-strain response and strain energy characteristics of EPP were evaluated. Additionally, the stress-strain recovery behaviour of EPP foam having different preloading histories was also studied while considering the effects of recovery time after preloading (0 to 28 Days). The results suggest that EPP foam subjected to different preloading histories has identical patterns of stress-strain response as of other conventional closed-cell polymeric foams, such as Expanded Polystyrene (EPS) foam, and EPP can adequately be used for load-bearing applications under the recommended design limits. Furthermore, noticeable recovery in the stress-strain response of EPP was also witnessed during the initial 14 days after preloading. Based on these findings, it is anticipated that the promising stress-strain recovery characteristics of EPP foam enable it to be reused, even after experiencing large in-situ deformations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
膨胀聚丙烯的力学性能及应力-应变恢复特性
膨胀聚丙烯(EPP)泡沫已被广泛认为是一种吸能材料,它通常用于各种工业应用。然而,EPP泡沫在建筑行业的应用范围相对有限,特别是在承重应用方面。为了解决这一问题,本研究在无侧限条件下测试了EPP泡沫的力学行为,并评估了不同预压/预压应变历史(5%至60%)对EPP应力-应变响应和应变能特性的影响。此外,考虑预压后恢复时间(0 ~ 28天)的影响,研究了不同预压时间下EPP泡沫的应力-应变恢复行为。结果表明,EPP泡沫在不同预压历史下具有与其他传统闭孔聚合物泡沫(如膨胀聚苯乙烯泡沫)相同的应力-应变响应模式,并且EPP可以在推荐的设计极限下充分用于承载应用。此外,在预压后的最初14天内,EPP的应力-应变响应也有明显的恢复。基于这些发现,预计EPP泡沫具有良好的应力应变恢复特性,即使在经历较大的原位变形后也可以重复使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geosynthetics International
Geosynthetics International ENGINEERING, GEOLOGICAL-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
6.90
自引率
20.00%
发文量
91
审稿时长
>12 weeks
期刊介绍: An online only, rapid publication journal, Geosynthetics International – an official journal of the International Geosynthetics Society (IGS) – publishes the best information on current geosynthetics technology in research, design innovation, new materials and construction practice. Topics covered The whole of geosynthetic materials (including natural fibre products) such as research, behaviour, performance analysis, testing, design, construction methods, case histories and field experience. Geosynthetics International is received by all members of the IGS as part of their membership, and is published in e-only format six times a year.
期刊最新文献
Na-CMC-amended clay: effect of mixing method on hydraulic conductivity and polymer elution A nonlinear analytical model for consolidated geotextile-encased sand columns Geotextile filters: from idealization to real behaviour (Giroud Lecture 2023) Mechanical characteristics of geogrids produced from recycled polyester Natural weathering effects of nonwoven geotextile exposed to different climate conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1