Development and characterization of low metallic friction composites filled with brass chips

IF 1.6 Q4 MATERIALS SCIENCE, COATINGS & FILMS Tribology - Materials, Surfaces & Interfaces Pub Date : 2022-05-10 DOI:10.1080/17515831.2022.2050605
F. Yusubov
{"title":"Development and characterization of low metallic friction composites filled with brass chips","authors":"F. Yusubov","doi":"10.1080/17515831.2022.2050605","DOIUrl":null,"url":null,"abstract":"ABSTRACT This research is focused on investigating new low metallic non-asbestos organic friction composite materials obtained by conventional powder metallurgy techniques. Three different composite mixtures were prepared by varying brass concentrations 1.5, 2.0 and 2.5 wt-% using the glycerin as a plasticizer. The prepared brake pad materials were subjected to density, hardness, thermal stability, friction and specific wear rate analysis. Tribological properties of friction specimen were studied on pin-on-disc type friction testing machine model MMW-1 using nominal contact pressure 7.69 MPa, sliding velocity 1.74 m/s and 1.57 km sliding distance conditions. Microstructural characterization of worn surfaces was carried out using scanning electron microscopy. Obtained test results indicate that brass chips have an important effect on improving tribo-performance. Physical–mechanical characterization of friction composites showed that the use of glycerin improves the physical properties of materials by improving the powder compressibility and reducing the structural defects formed by brass chips. GRAPHICAL ABSTRACT","PeriodicalId":23331,"journal":{"name":"Tribology - Materials, Surfaces & Interfaces","volume":"16 1","pages":"256 - 266"},"PeriodicalIF":1.6000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology - Materials, Surfaces & Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17515831.2022.2050605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT This research is focused on investigating new low metallic non-asbestos organic friction composite materials obtained by conventional powder metallurgy techniques. Three different composite mixtures were prepared by varying brass concentrations 1.5, 2.0 and 2.5 wt-% using the glycerin as a plasticizer. The prepared brake pad materials were subjected to density, hardness, thermal stability, friction and specific wear rate analysis. Tribological properties of friction specimen were studied on pin-on-disc type friction testing machine model MMW-1 using nominal contact pressure 7.69 MPa, sliding velocity 1.74 m/s and 1.57 km sliding distance conditions. Microstructural characterization of worn surfaces was carried out using scanning electron microscopy. Obtained test results indicate that brass chips have an important effect on improving tribo-performance. Physical–mechanical characterization of friction composites showed that the use of glycerin improves the physical properties of materials by improving the powder compressibility and reducing the structural defects formed by brass chips. GRAPHICAL ABSTRACT
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黄铜片填充低金属摩擦复合材料的研制与表征
摘要本研究的重点是研究传统粉末冶金技术制备的新型低金属无石棉有机摩擦复合材料。以甘油为增塑剂,通过改变黄铜的浓度1.5、2.0和2.5 wt-%,制备了三种不同的复合混合物。对制备的刹车片材料进行了密度、硬度、热稳定性、摩擦和比磨损率分析。在公称接触压力为7.69 MPa、滑动速度为1.74 m/s、滑动距离为1.57 km的MMW-1型销盘式摩擦试验机上,研究了摩擦试样的摩擦学性能。利用扫描电镜对磨损表面进行了显微组织表征。试验结果表明,黄铜屑对提高摩擦性能有重要作用。摩擦复合材料的物理力学表征表明,甘油的使用通过提高粉末压缩性和减少黄铜屑形成的结构缺陷来改善材料的物理性能。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tribology - Materials, Surfaces & Interfaces
Tribology - Materials, Surfaces & Interfaces MATERIALS SCIENCE, COATINGS & FILMS-
CiteScore
2.80
自引率
0.00%
发文量
15
期刊最新文献
Sliding wear behaviour of austempered ductile iron, boron steel and AISI 1045 steel of similar hardness: effect of microstructure, yield strength, and strain hardening Tribological aspects of magnesium matrix composites: a review of recent experimental studies Thin TiN coating on NiTi substrate through PVD method: improvement of the wear resistance Optimization of the Si3N4 coating formation through plasma spraying on Inconel 738 Traction performance modeling of worn footwear with perpendicular treads
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1