Application of Fourier Optics to Defect Inspection of Display Substrates

Young-jin Jung, Kwang Lee
{"title":"Application of Fourier Optics to Defect Inspection of Display Substrates","authors":"Young-jin Jung, Kwang Lee","doi":"10.3807/KJOP.2017.28.1.001","DOIUrl":null,"url":null,"abstract":"A method for inspecting defects in display substrates utilizing Fourier optics is proposed in this paper. A cost-effective inspection system can be realized with the proposed method, because it does not require a high-magnification microscope. Also, the proposed method can avoid tight tolerance for variations in displacement between substrate and camera, which is stems from shallow depth of field of the high-magnification microscope. In addition, possible damage caused by collisions between substrate and the inspection equipment can be avoided. The decision algorithm can be simpler than for a conventional inspection system, because spatial shift of periodic substrate patterns does not affect the intensity distribution of the diffracted light, by the Fourier transform property. The proposed method is explained with numerical studies, and experiments are carried out to check its feasibility for color-filter substrates of a liquid-crystal display.","PeriodicalId":42467,"journal":{"name":"Korean Journal of Optics and Photonics","volume":"28 1","pages":"1-8"},"PeriodicalIF":0.1000,"publicationDate":"2017-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Optics and Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3807/KJOP.2017.28.1.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

A method for inspecting defects in display substrates utilizing Fourier optics is proposed in this paper. A cost-effective inspection system can be realized with the proposed method, because it does not require a high-magnification microscope. Also, the proposed method can avoid tight tolerance for variations in displacement between substrate and camera, which is stems from shallow depth of field of the high-magnification microscope. In addition, possible damage caused by collisions between substrate and the inspection equipment can be avoided. The decision algorithm can be simpler than for a conventional inspection system, because spatial shift of periodic substrate patterns does not affect the intensity distribution of the diffracted light, by the Fourier transform property. The proposed method is explained with numerical studies, and experiments are carried out to check its feasibility for color-filter substrates of a liquid-crystal display.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
傅立叶光学在显示基板缺陷检测中的应用
本文提出了一种利用傅立叶光学检测显示基板缺陷的方法。使用所提出的方法可以实现成本效益高的检查系统,因为它不需要高倍率显微镜。此外,所提出的方法可以避免高放大率显微镜的浅景深引起的基板和相机之间位移变化的严格公差。此外,可以避免基板和检查设备之间的碰撞可能造成的损坏。由于傅立叶变换特性,周期性衬底图案的空间偏移不会影响衍射光的强度分布,因此决策算法可能比传统检查系统更简单。通过数值研究对所提出的方法进行了解释,并通过实验验证了该方法在液晶显示器滤色器基板上的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The gap between perceived mental health needs and actual service utilization in Australian adolescents. A Study of the Design of Automotive Communication Lamps Using Microlens Arrays Linearly Polarized 1-kW 20/400-㎛ Yb-doped Fiber Laser with 10-GHz Linewidth 3-channel Tiled-aperture Coherent-beam-combining System Based on Target-in-the-loop Monitoring and SPGD Algorithm A Study on Performance and Sensitivity Improvement of an Off-axis TMA Telescope Optical System by Changing the Aperture-stop Position
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1