Muhammad Rizal, Jaharah A. Ghani, H. Usman, M. Dirhamsyah, Amir Zaki Mubarak
{"title":"Design and Optimization of a Cross-Beam Force Transducer for a Stationary Dynamometer for Measuring Milling Cutting Force","authors":"Muhammad Rizal, Jaharah A. Ghani, H. Usman, M. Dirhamsyah, Amir Zaki Mubarak","doi":"10.36897/jme/162514","DOIUrl":null,"url":null,"abstract":"This paper’s objective is to design and optimize a force transducer to build a stationary dynamometer that can measure three axes of milling cutting force. To reduce interference error and increase sensitivity, the force transducer's Maltese cross-beam design was optimized. The force transducer's performance depends on three design parameters: the cross-rectangular beam's through-hole length and width, the compliant plate thickness, and the strain, stress, and stiffness of force transducer constructions calculated by ANSYS. The response surface method (RSM) estimates a desired second-order polynomial function for three geometric parameters based on sensitivity, interference error, safety factor, and stiffness. A stationary dynamometer prototype was made with four optimized force transducers and several piezoresistive strain sensors. The developed dynamometer has good linearity, repeatability, and hysteresis, as well as high sensitivities and low cross-sensitivity errors. The reference dynamometer's cutting force measurements were very close to those of the designed dynamometer in the validation test.","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36897/jme/162514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This paper’s objective is to design and optimize a force transducer to build a stationary dynamometer that can measure three axes of milling cutting force. To reduce interference error and increase sensitivity, the force transducer's Maltese cross-beam design was optimized. The force transducer's performance depends on three design parameters: the cross-rectangular beam's through-hole length and width, the compliant plate thickness, and the strain, stress, and stiffness of force transducer constructions calculated by ANSYS. The response surface method (RSM) estimates a desired second-order polynomial function for three geometric parameters based on sensitivity, interference error, safety factor, and stiffness. A stationary dynamometer prototype was made with four optimized force transducers and several piezoresistive strain sensors. The developed dynamometer has good linearity, repeatability, and hysteresis, as well as high sensitivities and low cross-sensitivity errors. The reference dynamometer's cutting force measurements were very close to those of the designed dynamometer in the validation test.
期刊介绍:
ournal of Machine Engineering is a scientific journal devoted to current issues of design and manufacturing - aided by innovative computer techniques and state-of-the-art computer systems - of products which meet the demands of the current global market. It favours solutions harmonizing with the up-to-date manufacturing strategies, the quality requirements and the needs of design, planning, scheduling and production process management. The Journal'' s subject matter also covers the design and operation of high efficient, precision, process machines. The Journal is a continuator of Machine Engineering Publisher for five years. The Journal appears quarterly, with a circulation of 100 copies, with each issue devoted entirely to a different topic. The papers are carefully selected and reviewed by distinguished world famous scientists and practitioners. The authors of the publications are eminent specialists from all over the world and Poland. Journal of Machine Engineering provides the best assistance to factories and universities. It enables factories to solve their difficult problems and manufacture good products at a low cost and fast rate. It enables educators to update their teaching and scientists to deepen their knowledge and pursue their research in the right direction.