Molecular Cloning and Expression Analysis of PgLAC in Pomegranate

L. Dong, F. Xiong, Na Liu, Qi Wang, Shuiming Zhang
{"title":"Molecular Cloning and Expression Analysis of PgLAC in Pomegranate","authors":"L. Dong, F. Xiong, Na Liu, Qi Wang, Shuiming Zhang","doi":"10.4236/ajmb.2018.83012","DOIUrl":null,"url":null,"abstract":"Decreasing the hardness of pomegranate seeds by reducing the content of lignin is an effective way to develop soft-seeded pomegranate. Laccases (LAC) is a key regulatory factor in lignin synthesis. The full-length sequence of PgLAC was obtained from “Punica granatum cv. Hongyushizi”, by using RACE and RT-PCR methods. PgLAC had an open reading frame of 1716 bp and encoded a protein of 571 amino acids. Phylogenetic tree analysis showed that PgLAC was most closely related to the LAC5 ortholog identified in Eucalyptus grandis (EgLAC5). Expression analysis showed that expression of PgLAC was higher in “Hongyushizi”, while lower in “Huiliruanzi” and “Tunisiruanzi”; PgLAC was predominantly expressed in stems; From 20 to 80 days after full bloom, the expression of PgLAC increased and reached a maximum at 80 d, then gradually decreased. These results suggested that PgLAC may be a candidate gene for reducing the hardness of pomegranate seeds.","PeriodicalId":65391,"journal":{"name":"美国分子生物学期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"美国分子生物学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ajmb.2018.83012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Decreasing the hardness of pomegranate seeds by reducing the content of lignin is an effective way to develop soft-seeded pomegranate. Laccases (LAC) is a key regulatory factor in lignin synthesis. The full-length sequence of PgLAC was obtained from “Punica granatum cv. Hongyushizi”, by using RACE and RT-PCR methods. PgLAC had an open reading frame of 1716 bp and encoded a protein of 571 amino acids. Phylogenetic tree analysis showed that PgLAC was most closely related to the LAC5 ortholog identified in Eucalyptus grandis (EgLAC5). Expression analysis showed that expression of PgLAC was higher in “Hongyushizi”, while lower in “Huiliruanzi” and “Tunisiruanzi”; PgLAC was predominantly expressed in stems; From 20 to 80 days after full bloom, the expression of PgLAC increased and reached a maximum at 80 d, then gradually decreased. These results suggested that PgLAC may be a candidate gene for reducing the hardness of pomegranate seeds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
石榴中PgLAC的分子克隆及表达分析
通过降低木质素含量来降低石榴籽硬度是开发软籽石榴的有效途径。漆酶(LAC)是木质素合成的关键调控因子。利用RACE和RT-PCR方法,从红玉子石榴中获得了PgLAC的全长序列。PgLAC具有1716bp的开放阅读框,编码571个氨基酸的蛋白质。系统发育树分析表明,PgLAC与巨桉中鉴定的LAC5直系同源物(EgLAC5)亲缘关系最为密切。表达分析表明,PgLAC在“红玉子”中的表达较高,而在“回力软子”和“突尼斯软子”中表达较低;PgLAC主要在茎中表达;盛花后20~80d,PgLAC表达增加,80d达到最大值,然后逐渐下降。这些结果表明,PgLAC可能是降低石榴籽硬度的候选基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
188
期刊最新文献
Comparison of Two Molecular Diagnostic Tests for COVID-19: Abbott RealTime SARS-CoV-2 and Allplex™ 2019-nCoV, in the Epidemic Context in Senegal Identification and Characterization of Hepatitis B Virus Immune Escape Mutants in Kenya Comparative Performance of Microscopy and Nested PCR for the Detection of Cryptosporidium Species in Patients Living with HIV/Aids in Abidjan (Côte d’Ivoire) Insight into Genetic Diversity of Cultivated Lima Bean (Phaseolus lunatus L.) in Benin Association of Host Interferon-γ Gene Polymorphism with Toxoplasma gondii Infection in Pregnant Women of Bangladesh
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1