{"title":"Shoreline change rates and land to sea sediment and soil organic carbon transfer in eastern Parry Peninsula from 1965 to 2020 (Amundsen Gulf, Canada)","authors":"Rodrigue Tanguy, D. Whalen, G. Prates, G. Vieira","doi":"10.1139/as-2022-0028","DOIUrl":null,"url":null,"abstract":"As the Arctic warms, permafrost coasts are eroding faster, threatening coastal communities, habitats, and altering sediment and nutrient budgets. The western Canadian Arctic is eroding at a rapid pace, however little is known on changes occurring in the Amundsen Gulf area. This study was conducted in the eastern coast of Parry Peninsula, a neglected rock-dominated coastal area. We used orthorectified aerial photos of 1965 and 1993 and very-high resolution satellite imagery of 2020 to manually delineate the shoreline according to backshore and foreshore centered approaches. Shoreline change rates were calculated and sediment and Organic Carbon transfer from land to sea estimated using digital elevation model, the Northern Circumpolar Soil Carbon Database and ground-ice content. The results show a mean erosion rate of 0.12 m/yr for the backshore zone and 0.16 m/yr for the foreshore zone, with increasing erosion in the Paulatuk Peninsula in recent decades. The average sediment transfer from land to sea was 20 m3/m/yr and the SOC flux was 7 kg C/m/yr. We highlight the importance of using the cliff-top as shoreline reference to accurately estimate sediment and SOC transfers, an approach neglected in automatic shoreline delineation techniques based on remote sensing imagery using the waterline.","PeriodicalId":48575,"journal":{"name":"Arctic Science","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arctic Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1139/as-2022-0028","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
As the Arctic warms, permafrost coasts are eroding faster, threatening coastal communities, habitats, and altering sediment and nutrient budgets. The western Canadian Arctic is eroding at a rapid pace, however little is known on changes occurring in the Amundsen Gulf area. This study was conducted in the eastern coast of Parry Peninsula, a neglected rock-dominated coastal area. We used orthorectified aerial photos of 1965 and 1993 and very-high resolution satellite imagery of 2020 to manually delineate the shoreline according to backshore and foreshore centered approaches. Shoreline change rates were calculated and sediment and Organic Carbon transfer from land to sea estimated using digital elevation model, the Northern Circumpolar Soil Carbon Database and ground-ice content. The results show a mean erosion rate of 0.12 m/yr for the backshore zone and 0.16 m/yr for the foreshore zone, with increasing erosion in the Paulatuk Peninsula in recent decades. The average sediment transfer from land to sea was 20 m3/m/yr and the SOC flux was 7 kg C/m/yr. We highlight the importance of using the cliff-top as shoreline reference to accurately estimate sediment and SOC transfers, an approach neglected in automatic shoreline delineation techniques based on remote sensing imagery using the waterline.
Arctic ScienceAgricultural and Biological Sciences-General Agricultural and Biological Sciences
CiteScore
5.00
自引率
12.10%
发文量
81
期刊介绍:
Arctic Science is an interdisciplinary journal that publishes original peer-reviewed research from all areas of natural science and applied science & engineering related to northern Polar Regions. The focus on basic and applied science includes the traditional knowledge and observations of the indigenous peoples of the region as well as cutting-edge developments in biological, chemical, physical and engineering science in all northern environments. Reports on interdisciplinary research are encouraged. Special issues and sections dealing with important issues in northern polar science are also considered.