N. M. Nizardo, Dzul Fadli Alimin, Maria L A D Lestari
{"title":"Synthesis and characterization of dual-responsive poly(N-vinylcaprolactam-co-N-methylolacrylamide) nanogels","authors":"N. M. Nizardo, Dzul Fadli Alimin, Maria L A D Lestari","doi":"10.1080/15685551.2022.2086412","DOIUrl":null,"url":null,"abstract":"ABSTRACT This article reports the synthesis of poly(N-vinylcaprolactam-co-N-methylolacrylamide) (P(NVCL-co-NMA)) nanogels and investigates their thermo-/pH-responsive behavior. The formation of nanogels was synthesized using free radical emulsion polymerization by varying the monomer composition of NVCL:NMA, and their molecular structure was characterized by 1H-NMR and FTIR. It was found that the nanogels were successfully prepared, and the nanogels exhibited LCST-type phase transition behavior. Cloud point transition temperature (Tc) was studied as a function of copolymer composition, MBA concentration, and pH of the solution by exploring their changes in turbidity using UV–vis spectrophotometer. Our studies reveal that Tc nanogels increased with increasing concentration of NMA, which is due to the hydrophilicity of NMA. Our research also demonstrated that the increase in MBA percentage could decrease the Tc of the synthesized nanogels. Interestingly, P(NVCL-co-NMA) nanogels showed not only a thermoresponsive behavior but also a pH response with increasing Tc in a strong acidic environment owing to the H-bonds within the polymer chains. The results show that nanogels with initial monomer composition of NVCL and NMA of 75% and 25%, respectively, and using 4% of MBA showed Tc around 35°C at pH 7.4. In addition, DLS studies also confirmed this result since the particle sizes became much larger after surpassing the temperature of 35°C. Due to this founding, such nanogels might have potential application in controlled release. Nevertheless, further studies regarding the adjustment of Tc are still needed.","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"25 1","pages":"155 - 164"},"PeriodicalIF":1.8000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designed Monomers and Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15685551.2022.2086412","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT This article reports the synthesis of poly(N-vinylcaprolactam-co-N-methylolacrylamide) (P(NVCL-co-NMA)) nanogels and investigates their thermo-/pH-responsive behavior. The formation of nanogels was synthesized using free radical emulsion polymerization by varying the monomer composition of NVCL:NMA, and their molecular structure was characterized by 1H-NMR and FTIR. It was found that the nanogels were successfully prepared, and the nanogels exhibited LCST-type phase transition behavior. Cloud point transition temperature (Tc) was studied as a function of copolymer composition, MBA concentration, and pH of the solution by exploring their changes in turbidity using UV–vis spectrophotometer. Our studies reveal that Tc nanogels increased with increasing concentration of NMA, which is due to the hydrophilicity of NMA. Our research also demonstrated that the increase in MBA percentage could decrease the Tc of the synthesized nanogels. Interestingly, P(NVCL-co-NMA) nanogels showed not only a thermoresponsive behavior but also a pH response with increasing Tc in a strong acidic environment owing to the H-bonds within the polymer chains. The results show that nanogels with initial monomer composition of NVCL and NMA of 75% and 25%, respectively, and using 4% of MBA showed Tc around 35°C at pH 7.4. In addition, DLS studies also confirmed this result since the particle sizes became much larger after surpassing the temperature of 35°C. Due to this founding, such nanogels might have potential application in controlled release. Nevertheless, further studies regarding the adjustment of Tc are still needed.
期刊介绍:
Designed Monomers and Polymers ( DMP) publishes prompt peer-reviewed papers and short topical reviews on all areas of macromolecular design and applications. Emphasis is placed on the preparations of new monomers, including characterization and applications. Experiments should be presented in sufficient detail (including specific observations, precautionary notes, use of new materials, techniques, and their possible problems) that they could be reproduced by any researcher wishing to repeat the work.
The journal also includes macromolecular design of polymeric materials (such as polymeric biomaterials, biomedical polymers, etc.) with medical applications.
DMP provides an interface between organic and polymer chemistries and aims to bridge the gap between monomer synthesis and the design of new polymers. Submssions are invited in the areas including, but not limited to:
-macromolecular science, initiators, macroinitiators for macromolecular design
-kinetics, mechanism and modelling aspects of polymerization
-new methods of synthesis of known monomers
-new monomers (must show evidence for polymerization, e.g. polycondensation, sequential combination, oxidative coupling, radiation, plasma polymerization)
-functional prepolymers of various architectures such as hyperbranched polymers, telechelic polymers, macromonomers, or dendrimers
-new polymeric materials with biomedical applications