{"title":"The potential extent of Early Triassic Kockatea Shale equivalent source rocks in the Northern Carnarvon and Perth Basins (Western Australia)","authors":"T. Taniwaki, C. Elders, A. Holman, K. Grice","doi":"10.1144/petgeo2022-023","DOIUrl":null,"url":null,"abstract":"\n In the northern Perth Basin (Western Australia), the Early Triassic Kockatea Shale is the primary petroleum source rock. Possible source rocks in the Northern Carnarvon Basin are more varied and include the Upper Jurassic Dingo Claystone as well as the Early Triassic Locker Shale. Biomarker analyses were conducted on petroleum samples from these basins to understand the nature of the petroleum systems. Many of the analysed petroleum samples contain carotenoids (okenane, chlorobactane and isorenieratane) derived from photosynthetic sulfur bacteria, suggesting that their source rocks were deposited under conditions of photic zone euxinia (PZE) and/or derived from microbialites. In the northern Perth Basin, the major lithofacies contributing to the source rock are dark coloured mudstones deposited under PZE conditions and/or derived from microbialites. In the southern Perth Basin, the potential source rock is either Permian, Jurassic or Cretaceous in age as indicated by the low concentrations or absence of carotenoids and the Triassic biomarker\n n\n -C\n 33\n alkylcyclohexane. There is also a possibility that the Lower Triassic Locker Shale is the source rock of petroleum in the Tubridgi field on the Peedamullah Shelf of the Northern Carnarvon Basin, based on the similarity of biomarkers to Perth Basin petroleum sourced from the Kockatea Shale. However, the possibility of charge from the Upper Jurassic Dingo Claystone cannot be entirely excluded.\n","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2022-023","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the northern Perth Basin (Western Australia), the Early Triassic Kockatea Shale is the primary petroleum source rock. Possible source rocks in the Northern Carnarvon Basin are more varied and include the Upper Jurassic Dingo Claystone as well as the Early Triassic Locker Shale. Biomarker analyses were conducted on petroleum samples from these basins to understand the nature of the petroleum systems. Many of the analysed petroleum samples contain carotenoids (okenane, chlorobactane and isorenieratane) derived from photosynthetic sulfur bacteria, suggesting that their source rocks were deposited under conditions of photic zone euxinia (PZE) and/or derived from microbialites. In the northern Perth Basin, the major lithofacies contributing to the source rock are dark coloured mudstones deposited under PZE conditions and/or derived from microbialites. In the southern Perth Basin, the potential source rock is either Permian, Jurassic or Cretaceous in age as indicated by the low concentrations or absence of carotenoids and the Triassic biomarker
n
-C
33
alkylcyclohexane. There is also a possibility that the Lower Triassic Locker Shale is the source rock of petroleum in the Tubridgi field on the Peedamullah Shelf of the Northern Carnarvon Basin, based on the similarity of biomarkers to Perth Basin petroleum sourced from the Kockatea Shale. However, the possibility of charge from the Upper Jurassic Dingo Claystone cannot be entirely excluded.
期刊介绍:
Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE).
Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership.
Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.