A. Sinha, V. G. Havanagi, P. G. Sreekantan, S. Chandra
{"title":"Geotechnical characterisation of zinc tailing waste material for road construction","authors":"A. Sinha, V. G. Havanagi, P. G. Sreekantan, S. Chandra","doi":"10.1080/17486025.2021.1990420","DOIUrl":null,"url":null,"abstract":"ABSTRACT Zinc tailing waste material is generated during the extraction of zinc metal. Its deposit is increasing year after year posing a threat to the environment and occupying large precious land. The present research explores the possibility of its application in road construction and filling. Physical and chemical tests were carried out, viz. SEM, EDS, X-ray diffraction and toxicity characteristics leachate procedure. The geotechnical characterisation was carried out and compared with similar types of materials, viz. soil and industrial wastes (fly ash and jarofix). Stress-settlement behaviour was studied by using a small scale physical model and validated by a numerical model test. Tailing was further mixed with cement to improve its properties for application in stabilised layers. Tailing is a porous, multi-phase and non-swelling cohesionless fine-grained material. It contains mainly oxides of silica, alumina, magnesium, calcium and less concentration of heavy metals. It has a high dry density (18.62 kN/m3), California Bearing Ratio (11%) and angle of internal friction (34°) compared to soil which makes it suitable for road construction. Cement stabilised tailing can be used in sub-base layer and can save about 170 mm thickness of the aggregate layer. Modulus value (18.17 MPa) indicates that it is a stiff material which leads to less settlement as a structural fill.","PeriodicalId":46470,"journal":{"name":"Geomechanics and Geoengineering-An International Journal","volume":"17 1","pages":"1984 - 2004"},"PeriodicalIF":1.7000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Geoengineering-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17486025.2021.1990420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 5
Abstract
ABSTRACT Zinc tailing waste material is generated during the extraction of zinc metal. Its deposit is increasing year after year posing a threat to the environment and occupying large precious land. The present research explores the possibility of its application in road construction and filling. Physical and chemical tests were carried out, viz. SEM, EDS, X-ray diffraction and toxicity characteristics leachate procedure. The geotechnical characterisation was carried out and compared with similar types of materials, viz. soil and industrial wastes (fly ash and jarofix). Stress-settlement behaviour was studied by using a small scale physical model and validated by a numerical model test. Tailing was further mixed with cement to improve its properties for application in stabilised layers. Tailing is a porous, multi-phase and non-swelling cohesionless fine-grained material. It contains mainly oxides of silica, alumina, magnesium, calcium and less concentration of heavy metals. It has a high dry density (18.62 kN/m3), California Bearing Ratio (11%) and angle of internal friction (34°) compared to soil which makes it suitable for road construction. Cement stabilised tailing can be used in sub-base layer and can save about 170 mm thickness of the aggregate layer. Modulus value (18.17 MPa) indicates that it is a stiff material which leads to less settlement as a structural fill.
期刊介绍:
Geomechanics is concerned with the application of the principle of mechanics to earth-materials (namely geo-material). Geoengineering covers a wide range of engineering disciplines related to geo-materials, such as foundation engineering, slope engineering, tunnelling, rock engineering, engineering geology and geo-environmental engineering. Geomechanics and Geoengineering is a major publication channel for research in the areas of soil and rock mechanics, geotechnical and geological engineering, engineering geology, geo-environmental engineering and all geo-material related engineering and science disciplines. The Journal provides an international forum for the exchange of innovative ideas, especially between researchers in Asia and the rest of the world.