Tantalite Solubility in Granitoid Melts and Evaluation of the Ta and Nb Diffusion Coefficients

IF 1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Petrology Pub Date : 2022-11-15 DOI:10.1134/S0869591122060030
V. Yu. Chevychelov
{"title":"Tantalite Solubility in Granitoid Melts and Evaluation of the Ta and Nb Diffusion Coefficients","authors":"V. Yu. Chevychelov","doi":"10.1134/S0869591122060030","DOIUrl":null,"url":null,"abstract":"<p>The paper presents experimental data on tantalite solubility in water-saturated granitoid melts with various alumina and alkaline elements concentrations at <i>T</i> = 650–850°C and <i>P</i> = 100 MPa. The maximum Ta concentration (effective solubility) in melt is shown to be always higher than the Nb concentration. As the melt composition is changed from alkaline to Al<sub>2</sub>O<sub>3</sub>-enriched, the Ta and Nb concentrations decrease by one to two orders of magnitude, and the Nb/Ta ratio simultaneously decreases (from ~0.8–0.7 to ~0.4–0.1) because the Nb concentration decreases notably more rapidly than that of Ta. This effect is enhanced at decreasing temperature. The effective Ta solubility in melt is demonstrated to be practically independent of the composition of the dissolving mineral of the columbite-tantalite series. The Ta, Nb, Mn, and Fe diffusion coefficients in granitoid melts are estimated. The Ta and Nb diffusion coefficients at <i>T</i> = 750°C and <i>P</i> = 100 MPa are ~10<sup>–10</sup> cm<sup>2</sup>/s, and those of Fe and Mn are ~10<sup>–8.5</sup> cm<sup>2</sup>/s. With an increase in temperature from 740 to 980°C, all of the diffusion coefficients increase by approximately 1.5 orders of magnitude. The configurations of the diffusion profiles of Ta concentration in melts change differently depending on change in the composition of the melt, temperature, or pressure.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0869591122060030","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents experimental data on tantalite solubility in water-saturated granitoid melts with various alumina and alkaline elements concentrations at T = 650–850°C and P = 100 MPa. The maximum Ta concentration (effective solubility) in melt is shown to be always higher than the Nb concentration. As the melt composition is changed from alkaline to Al2O3-enriched, the Ta and Nb concentrations decrease by one to two orders of magnitude, and the Nb/Ta ratio simultaneously decreases (from ~0.8–0.7 to ~0.4–0.1) because the Nb concentration decreases notably more rapidly than that of Ta. This effect is enhanced at decreasing temperature. The effective Ta solubility in melt is demonstrated to be practically independent of the composition of the dissolving mineral of the columbite-tantalite series. The Ta, Nb, Mn, and Fe diffusion coefficients in granitoid melts are estimated. The Ta and Nb diffusion coefficients at T = 750°C and P = 100 MPa are ~10–10 cm2/s, and those of Fe and Mn are ~10–8.5 cm2/s. With an increase in temperature from 740 to 980°C, all of the diffusion coefficients increase by approximately 1.5 orders of magnitude. The configurations of the diffusion profiles of Ta concentration in melts change differently depending on change in the composition of the melt, temperature, or pressure.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
花岗岩熔体中钽的溶解度及Ta、Nb扩散系数的评定
本文介绍了在T = 650 ~ 850℃,P = 100 MPa条件下,不同氧化铝和碱性元素浓度的水饱和花岗岩熔体中钽铁矿溶解度的实验数据。熔体中Ta的最大浓度(有效溶解度)总是高于Nb的浓度。随着熔体成分由碱性向al2o3富集转变,Ta和Nb浓度下降了1 ~ 2个数量级,Nb/Ta比值同时下降(从~0.8 ~ 0.7降至~0.4 ~ 0.1),因为Nb浓度的下降速度明显快于Ta。这种效应在温度降低时增强。熔体中Ta的有效溶解度实际上与钶钽铁矿系列溶解矿物的组成无关。估算了花岗岩熔体中Ta、Nb、Mn和Fe的扩散系数。T = 750℃,P = 100 MPa时,Ta和Nb的扩散系数为~10 ~10 cm2/s, Fe和Mn的扩散系数为~10 ~ 8.5 cm2/s。当温度从740℃升高到980℃时,所有的扩散系数都增加了大约1.5个数量级。熔体中Ta浓度扩散曲线的形态随熔体成分、温度或压力的变化而发生不同的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Petrology
Petrology 地学-地球科学综合
CiteScore
2.40
自引率
20.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Petrology is a journal of magmatic, metamorphic, and experimental petrology, mineralogy, and geochemistry. The journal offers comprehensive information on all multidisciplinary aspects of theoretical, experimental, and applied petrology. By giving special consideration to studies on the petrography of different regions of the former Soviet Union, Petrology provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.
期刊最新文献
Osumilite-Bearing Lavas of the Keli Highland (Greater Caucasus): Petrological and Geochemical Characteristics, Mineral Composition, and Conditions of Melt Generation The First Discovery of Archean Dolerite Dikes in the Western Part of the Aldan Shield Generalized P–T Path and Fluid Regime of the Exhumation of Metapelites in the Central Zone of the Limpopo Complex, South Africa Raman Spectroscopic Data of the Quenching Phases of a Pt Solution in a Low Water Reduced Carbonic Fluid at P = 200 and T = 950–1000°C Genesis of Triassic Buziwannan Granites in the West Kunlun Orogen Belt, China: Constraints from in Situ Major, Trace and Sr Isotope Analyses of Plagioclase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1