Statistical Inference for Gompertz Distribution Using the Adaptive-General Progressive Type-II Censored Samples

Q3 Business, Management and Accounting American Journal of Mathematical and Management Sciences Pub Date : 2020-11-09 DOI:10.1080/01966324.2020.1835590
M. H. Abu-Moussa, M. El-din, M. A. Mosilhy
{"title":"Statistical Inference for Gompertz Distribution Using the Adaptive-General Progressive Type-II Censored Samples","authors":"M. H. Abu-Moussa, M. El-din, M. A. Mosilhy","doi":"10.1080/01966324.2020.1835590","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we combine the adaptive progressive Type-II censoring model with the general progressive model, to obtain the estimates for the parameters of Gompertz distribution, and the Bayesian prediction intervals. Estimation is executed using the maximum likelihood method (MLE) and the Bayesian method. Bayesian estimates are constructed depending on four types of loss functions. The credible intervals and the asymptotic confidence intervals are determined for the parameters of Gompertz distribution based on the Bayesian estimates and the MLEs, respectively. Finally, a real data example and the simulation study are discussed to compare the proposed methods.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"40 1","pages":"189 - 211"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2020.1835590","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2020.1835590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract In this article, we combine the adaptive progressive Type-II censoring model with the general progressive model, to obtain the estimates for the parameters of Gompertz distribution, and the Bayesian prediction intervals. Estimation is executed using the maximum likelihood method (MLE) and the Bayesian method. Bayesian estimates are constructed depending on four types of loss functions. The credible intervals and the asymptotic confidence intervals are determined for the parameters of Gompertz distribution based on the Bayesian estimates and the MLEs, respectively. Finally, a real data example and the simulation study are discussed to compare the proposed methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用自适应一般渐进型ii截尾样本的Gompertz分布的统计推断
本文将自适应渐进式ii型滤波模型与一般渐进式模型相结合,得到了Gompertz分布参数的估计和贝叶斯预测区间。估计使用最大似然法(MLE)和贝叶斯方法执行。贝叶斯估计是根据四种类型的损失函数构造的。分别基于贝叶斯估计和最大似然估计确定了Gompertz分布参数的可信区间和渐近置信区间。最后,通过实际数据算例和仿真研究对所提方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
期刊最新文献
The Unit Omega Distribution, Properties and Its Application Classical and Bayesian Inference of Unit Gompertz Distribution Based on Progressively Type II Censored Data An Alternative Discrete Analogue of the Half-Logistic Distribution Based on Minimization of a Distance between Cumulative Distribution Functions Classical and Bayes Analyses of Autoregressive Model with Heavy-Tailed Error Testing on the Quantiles of a Single Normal Population in the Presence of Several Normal Populations with a Common Variance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1