GLS estimation and confidence sets for the date of a single break in models with trends

IF 0.8 4区 经济学 Q3 ECONOMICS Econometric Reviews Pub Date : 2023-02-01 DOI:10.1080/07474938.2023.2178088
E. Beutner, Yicong Lin, Stephan Smeekes
{"title":"GLS estimation and confidence sets for the date of a single break in models with trends","authors":"E. Beutner, Yicong Lin, Stephan Smeekes","doi":"10.1080/07474938.2023.2178088","DOIUrl":null,"url":null,"abstract":"Abstract We develop a Feasible Generalized Least Squares estimator of the date of a structural break in level and/or trend. The estimator is based on a consistent estimate of a T-dimensional inverse autocovariance matrix. A cubic polynomial transformation of break date estimates can be approximated by a nonstandard yet nuisance parameter free distribution asymptotically. The new limiting distribution captures the asymmetry and bimodality in finite samples and is applicable for inference with a single, known, set of critical values. We consider the confidence intervals/sets for break dates based on both Wald-type tests and by inverting multiple likelihood ratio (LR) tests. A simulation study shows that the proposed estimator increases the empirical concentration probability in a small neighborhood of the true break date and potentially reduces the mean squared errors. The LR-based confidence intervals/sets have good coverage while maintaining informative length even with highly persistent errors and small break sizes.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"42 1","pages":"195 - 219"},"PeriodicalIF":0.8000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2023.2178088","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract We develop a Feasible Generalized Least Squares estimator of the date of a structural break in level and/or trend. The estimator is based on a consistent estimate of a T-dimensional inverse autocovariance matrix. A cubic polynomial transformation of break date estimates can be approximated by a nonstandard yet nuisance parameter free distribution asymptotically. The new limiting distribution captures the asymmetry and bimodality in finite samples and is applicable for inference with a single, known, set of critical values. We consider the confidence intervals/sets for break dates based on both Wald-type tests and by inverting multiple likelihood ratio (LR) tests. A simulation study shows that the proposed estimator increases the empirical concentration probability in a small neighborhood of the true break date and potentially reduces the mean squared errors. The LR-based confidence intervals/sets have good coverage while maintaining informative length even with highly persistent errors and small break sizes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有趋势的模型中单个中断日期的GLS估计和置信集
摘要:本文提出了一种可行的广义最小二乘估计方法来估计结构在水平和/或趋势上的断裂时间。该估计器基于t维逆自协方差矩阵的一致估计。断裂日期估计的三次多项式变换可以用一个非标准的无扰参数分布渐近逼近。新的极限分布捕获了有限样本中的不对称性和双峰性,并适用于单一已知临界值集的推理。我们基于wald型检验和反向多重似然比(LR)检验来考虑分手日期的置信区间/集。仿真研究表明,该估计器提高了真实断裂日期小邻域内的经验集中概率,并有可能减小均方误差。基于lr的置信区间/集具有良好的覆盖率,即使在高度持续的错误和较小的中断大小下也能保持信息长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Econometric Reviews
Econometric Reviews 管理科学-数学跨学科应用
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.
期刊最新文献
Estimation of random functions proxying for unobservables Bootstrap inference on a factor model based average treatment effects estimator Using machine learning for efficient flexible regression adjustment in economic experiments Lag order selection for long-run variance estimation in econometrics Selecting the number of factors in approximate factor models using group variable regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1