Genetic structure and genome-wide association study of a genomic panel of two-row, spring barley (Hordeum vulgare L.) with differential reaction to Fusarium head blight (Fusarium graminearum Schwabe) and deoxynivalenol production
J. Tucker, A. Brûlé-Babel, C. Hiebert, R. Larios, W. Legge, A. Badea, W. Fernando
{"title":"Genetic structure and genome-wide association study of a genomic panel of two-row, spring barley (Hordeum vulgare L.) with differential reaction to Fusarium head blight (Fusarium graminearum Schwabe) and deoxynivalenol production","authors":"J. Tucker, A. Brûlé-Babel, C. Hiebert, R. Larios, W. Legge, A. Badea, W. Fernando","doi":"10.1080/07060661.2022.2086925","DOIUrl":null,"url":null,"abstract":"Abstract Fusarium head blight (FHB), primarily incited by Fusarium graminearum Schwabe, is the most devastating disease of barley (Hordeum vulgare L.) in Canada. Contaminated grains are unsuitable for use as livestock feed or by the malting industry, primarily due to contamination by mycotoxins such as deoxynivalenol (DON). Reducing DON content has been a long-term goal of barley breeders; however, the complex genetics of resistance and laborious testing required have made it difficult to develop resistant cultivars. An Illumina 50 K SNP beadchip was used to genotype a diverse collection (n = 400) of two-row barley genotypes, selected primarily from North American-breeding programs. This genomic panel was phenotyped in three environments in Manitoba, Canada, over two growing seasons. Genotypes were evaluated for heading date, height, FHB score, and DON content. A genome-wide association study (GWAS) was carried out using a mixed linear model (MLM: Q + K) accounting for population structure (Q) and kinship (K) as covariates. This study characterized the population structure of two-row barley germplasm important to North American-breeding programs. Significant marker-trait associations were identified on all chromosomes for FHB, and on all chromosomesexcept 1 H and 6 H for DON content. Individual marker effects were small, explaining only up to 5% of the phenotypic variation. Genes within genomic regions that were associated with FHB-related traits displayed multiple functions linked with disease resistance. While numerous minor, marker-trait associations were identified, phenotypic evaluations are still the best predictors of these traits, despite their time-consuming nature and dependenceon environmental conditions.","PeriodicalId":9468,"journal":{"name":"Canadian Journal of Plant Pathology","volume":"44 1","pages":"874 - 891"},"PeriodicalIF":1.6000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/07060661.2022.2086925","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Fusarium head blight (FHB), primarily incited by Fusarium graminearum Schwabe, is the most devastating disease of barley (Hordeum vulgare L.) in Canada. Contaminated grains are unsuitable for use as livestock feed or by the malting industry, primarily due to contamination by mycotoxins such as deoxynivalenol (DON). Reducing DON content has been a long-term goal of barley breeders; however, the complex genetics of resistance and laborious testing required have made it difficult to develop resistant cultivars. An Illumina 50 K SNP beadchip was used to genotype a diverse collection (n = 400) of two-row barley genotypes, selected primarily from North American-breeding programs. This genomic panel was phenotyped in three environments in Manitoba, Canada, over two growing seasons. Genotypes were evaluated for heading date, height, FHB score, and DON content. A genome-wide association study (GWAS) was carried out using a mixed linear model (MLM: Q + K) accounting for population structure (Q) and kinship (K) as covariates. This study characterized the population structure of two-row barley germplasm important to North American-breeding programs. Significant marker-trait associations were identified on all chromosomes for FHB, and on all chromosomesexcept 1 H and 6 H for DON content. Individual marker effects were small, explaining only up to 5% of the phenotypic variation. Genes within genomic regions that were associated with FHB-related traits displayed multiple functions linked with disease resistance. While numerous minor, marker-trait associations were identified, phenotypic evaluations are still the best predictors of these traits, despite their time-consuming nature and dependenceon environmental conditions.
期刊介绍:
Canadian Journal of Plant Pathology is an international journal which publishes the results of scientific research and other information relevant to the discipline of plant pathology as review papers, research articles, notes and disease reports. Papers may be submitted in English or French and are subject to peer review. Research articles and notes include original research that contributes to the science of plant pathology or to the practice of plant pathology, including the diagnosis, estimation, prevention, and control of plant diseases. Notes are generally shorter in length and include more concise research results. Disease reports are brief, previously unpublished accounts of diseases occurring on a new host or geographic region. Review papers include mini-reviews, descriptions of emerging technologies, and full reviews on a topic of interest to readers, including symposium papers. These papers will be highlighted in each issue of the journal and require prior discussion with the Editor-in-Chief prior to submission.