Soret-Dufour Mechanisms on the Thermal Loading of Catteneo-Christov Theories on Magnetohydrodynamic (MHD) Casson Nanofluid Dynamics Over a Stretching Sheet

IF 2.7 Q3 NANOSCIENCE & NANOTECHNOLOGY Journal of Nanofluids Pub Date : 2023-06-01 DOI:10.1166/jon.2023.1937
T. Gladys, G. V. R. Reddy
{"title":"Soret-Dufour Mechanisms on the Thermal Loading of Catteneo-Christov Theories on Magnetohydrodynamic (MHD) Casson Nanofluid Dynamics Over a Stretching Sheet","authors":"T. Gladys, G. V. R. Reddy","doi":"10.1166/jon.2023.1937","DOIUrl":null,"url":null,"abstract":"The dynamics of Casson nanofluid with chemically reactive and thermally conductive medium past an elongated sheet were investigated in this study. The thermal loading of the fluids is considered while experimenting the Cattaneo-Christov theories with MHD boundary layer flow. The Rosseland\n approximation is used on the radiative heat flux because the fluids are optically thin. Partial differential equations were used in the flow model (PDEs). These PDEs were converted to ordinary differential equations (ODEs). The Runge-kutta method and firing techniques were used to solve the\n altered equations numerically. Graphs were used to depict the effect of relevant flow parameters, while computations on engineering values of relevance were tabulated. The velocity profile was found to degenerate when the visco-inelastic parameter (Casson) was set to a higher value. The boundary\n layer distributions degenerate when the unsteadiness parameter (A) is increased. The findings revealed that, the plastic dynamic viscosity of the Casson fluid causes reduction to the velocity profile. This paper is unique because it examined the simultaneous thermal loading of two non-Newtonian\n fluids (Casson-Williamson) nanofluids with experimentation of Cattaneo-Christov theories. To the very best of our knowledge, no study has explored study of this type in literature.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.1937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamics of Casson nanofluid with chemically reactive and thermally conductive medium past an elongated sheet were investigated in this study. The thermal loading of the fluids is considered while experimenting the Cattaneo-Christov theories with MHD boundary layer flow. The Rosseland approximation is used on the radiative heat flux because the fluids are optically thin. Partial differential equations were used in the flow model (PDEs). These PDEs were converted to ordinary differential equations (ODEs). The Runge-kutta method and firing techniques were used to solve the altered equations numerically. Graphs were used to depict the effect of relevant flow parameters, while computations on engineering values of relevance were tabulated. The velocity profile was found to degenerate when the visco-inelastic parameter (Casson) was set to a higher value. The boundary layer distributions degenerate when the unsteadiness parameter (A) is increased. The findings revealed that, the plastic dynamic viscosity of the Casson fluid causes reduction to the velocity profile. This paper is unique because it examined the simultaneous thermal loading of two non-Newtonian fluids (Casson-Williamson) nanofluids with experimentation of Cattaneo-Christov theories. To the very best of our knowledge, no study has explored study of this type in literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Catteneo-Christov热载荷的Soret-Dufour机制拉伸薄板上的磁流体动力学(MHD)Casson纳米流体动力学理论
在本研究中,研究了具有化学反应性和导热介质的Casson纳米流体通过细长片材的动力学。在用MHD边界层流动实验Cattaneo-Christov理论时,考虑了流体的热载荷。Rosseland近似用于辐射热通量,因为流体在光学上很薄。在流动模型中使用了偏微分方程。这些偏微分方程被转换为常微分方程。采用Runge-kutta方法和发射技术对修改后的方程组进行了数值求解。图表用于描述相关流量参数的影响,而相关工程值的计算则制成表格。当粘非弹性参数(Casson)设置为较高值时,发现速度剖面退化。当不稳定性参数(A)增加时,边界层分布退化。研究结果表明,Casson流体的塑性动态粘度导致速度剖面降低。这篇论文的独特之处在于,它通过Cattaneo Christov理论的实验研究了两种非牛顿流体(Casson Williamson)纳米流体的同时热载荷。据我们所知,没有任何研究探索过文学中的这类研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanofluids
Journal of Nanofluids NANOSCIENCE & NANOTECHNOLOGY-
自引率
14.60%
发文量
89
期刊介绍: Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.
期刊最新文献
A Revised Work on the Rayleigh-Bénard Instability of Nanofluid in a Porous Medium Layer Magnetohydrodynamic Darcy-Forchheimer Squeezed Flow of Casson Nanofluid Over Horizontal Channel with Activation Energy and Thermal Radiation Computational Study of Crossed-Cavity Hybrid Nanofluid Turbulent Forced Convection for Enhanced Concentrated Solar Panel Cooling A Local Thermal Non-Equilibrium Approach to an Electromagnetic Hybrid Nanofluid Flow in a Non-Parallel Riga Plate Channel Mixed Convection Flow Analysis of Carreau Fluid Over a Vertical Stretching/Shrinking Sheet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1