S. Kondratyuk, V. I. Veis, Z. Parkhomchuk, V.A. Loktyonov-Remyzovskii
{"title":"Structure and wear of gradient steel castings","authors":"S. Kondratyuk, V. I. Veis, Z. Parkhomchuk, V.A. Loktyonov-Remyzovskii","doi":"10.15407/mom2021.04.016","DOIUrl":null,"url":null,"abstract":"The effect of overheating of the melt over the equilibrium liquidus in the temperature range 1570 °C – 1670 °C and the rate of its cooling during crystallization and structure formation of castings on the formation of the length and morphology of the main macrostructural zones, grain dispersion, characteristics of the fine crystal structure, hardness and intensity of abrasive wear over the section of 25L steel castings with a differentiated cast structure was investigated. Regular changes of these indicators depending on thermokinetic conditions of crystallization are established. The determining influence of the melt cooling rate on the morphology and dispersion of the cast structure due to different degrees of melt supercooling during crystallization of different structural zones of castings is shown. As the distance from the rapidly cooling surface of the castings and taking into account the increase in the temperature of the melt overheat from 1570 ºC to 1670 ºC, the grain size varies from 5… 7 numbers to 1… 2 numbers, respectively. In the case of normal heat removal rate during crystallization, the grain size in the castings varies from 4… 2 to -1… -2 numbers. The determined characteristics of wear resistance of steel in different structural zones correlate with changes in the characteristics of the cast structure and the cross-sectional strength of castings. The research results open the prospect of developing new foundry technologies for the production of cast products with differential properties for special operating conditions. Keywords: gradient structure, structural zones, melt, wear.","PeriodicalId":33600,"journal":{"name":"Metaloznavstvo ta obrobka metaliv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metaloznavstvo ta obrobka metaliv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/mom2021.04.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The effect of overheating of the melt over the equilibrium liquidus in the temperature range 1570 °C – 1670 °C and the rate of its cooling during crystallization and structure formation of castings on the formation of the length and morphology of the main macrostructural zones, grain dispersion, characteristics of the fine crystal structure, hardness and intensity of abrasive wear over the section of 25L steel castings with a differentiated cast structure was investigated. Regular changes of these indicators depending on thermokinetic conditions of crystallization are established. The determining influence of the melt cooling rate on the morphology and dispersion of the cast structure due to different degrees of melt supercooling during crystallization of different structural zones of castings is shown. As the distance from the rapidly cooling surface of the castings and taking into account the increase in the temperature of the melt overheat from 1570 ºC to 1670 ºC, the grain size varies from 5… 7 numbers to 1… 2 numbers, respectively. In the case of normal heat removal rate during crystallization, the grain size in the castings varies from 4… 2 to -1… -2 numbers. The determined characteristics of wear resistance of steel in different structural zones correlate with changes in the characteristics of the cast structure and the cross-sectional strength of castings. The research results open the prospect of developing new foundry technologies for the production of cast products with differential properties for special operating conditions. Keywords: gradient structure, structural zones, melt, wear.