S. Averin, A. Plenkin, Pavel Ignatev, M. Vorobiev, A. Veitsel
{"title":"Advanced Multi-Engine Platform (AMP™) – A Way to Robust RTK","authors":"S. Averin, A. Plenkin, Pavel Ignatev, M. Vorobiev, A. Veitsel","doi":"10.1515/aon-2019-0002","DOIUrl":null,"url":null,"abstract":"Abstract The paper describes the Advanced Multi-Engine Platform (AMP™) – Topcon’s patent pending technique, which is capable to improve RTK performance, based on the idea of running several RTK engines in parallel. The performance of AMP™ is dependent on Topcon receiver board, where it has been implemented, and the best results are achieved with B210 board. The main specifics of B210 is that it has two RF front-ends and a single digital section. Such an architecture allows for calculating heading and tilt within a single receiver board, and providing better RTK performance due to synergy of attitude determination and RTK solutions from two antennas, calculated within a single digital section. The paper describes specifics of B210 board along with mathematical aspects of AMP™ and its logic. The test results demonstrate noticeable improvements in RTK performance for B210 receiver board with AMP™, compared with the classical single-engine RTK approach.","PeriodicalId":30601,"journal":{"name":"Annual of Navigation","volume":"26 1","pages":"12 - 20"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual of Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/aon-2019-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The paper describes the Advanced Multi-Engine Platform (AMP™) – Topcon’s patent pending technique, which is capable to improve RTK performance, based on the idea of running several RTK engines in parallel. The performance of AMP™ is dependent on Topcon receiver board, where it has been implemented, and the best results are achieved with B210 board. The main specifics of B210 is that it has two RF front-ends and a single digital section. Such an architecture allows for calculating heading and tilt within a single receiver board, and providing better RTK performance due to synergy of attitude determination and RTK solutions from two antennas, calculated within a single digital section. The paper describes specifics of B210 board along with mathematical aspects of AMP™ and its logic. The test results demonstrate noticeable improvements in RTK performance for B210 receiver board with AMP™, compared with the classical single-engine RTK approach.